Land application of municipal wastewater to managed forests is an important treatment and water reuse technology used globally, but the hydrological processes of these systems are not well characterized for temperate areas with annual rainfall of 1200 mm or greater. This study evaluated the impact of municipal wastewater irrigation to the local water balance at a 3000-ha land application facility where secondary-treated wastewater is land applied to a mixed hardwood-pine forest over 900 ha. Stable isotopes of hydrogen (H) and oxygen (O), chloride concentrations, and specific conductance were used in combination with hydrometric measurements to estimate the wastewater composition in groundwater, surface water, and at the watershed outlet during dry and wet seasonal periods and during one large rainfall event. Wastewater and water bodies receiving irrigation were found to have significantly higher δH, δO, specific conductance, and chloride concentrations. Using these tracers, a two-component, three-end member geochemical mixing model estimated mean wastewater compositions in the surficial aquifer receiving irrigation from 47 to 73%. Surface water onsite was found to reflect the high wastewater composition in groundwater. Land-applied wastewater contributed an estimated 24% of total streamflow, with the highest wastewater compositions in surface water observed during major storm events and at low-flow conditions. Groundwater and surface water within the watershed were found to have proportionally higher wastewater compositions than expected based on the proportion of irrigation to rainfall received by these areas.
Mechanisms of runoff generation in the humid tropics are poorly understood, particularly in the context of land‐use/land cover change. This study analyzed the results of 124 storm hydrographs from three humid tropical catchments of markedly different vegetation cover and land‐use history in central Panama during the 2017 wet season: actively grazed pasture, young secondary succession, and near‐mature forest. We used electrical conductivity to separate baseflow (old water) from storm‐event water (new‐water). In all three land covers, new‐water dominated storm runoff generation in 44% of the sampled storm events, indicating the dominance of fast shallow flow paths in the landscape. Activation of these flow paths was found to depend on a combination of maximum rainfall intensity and total storm rainfall, which, in turn, relates to markedly contrasting hydrograph separation results among land covers. Relationships between these rainfall characteristics and storm runoff generation were nonlinear, producing a threshold response with the exceedance of specific rainfall volumes and/or intensities. The pastoral catchment delivered order of magnitude more new‐water during storm events than the two forested catchments. Although new‐water contributed minimally (<10%) to total wet season runoff in the forested catchments, 43% of runoff generation in the pasture came from five large rainfall events where a threshold response produced substantial increases in total runoff and new‐runoff efficiency. Based on our results, we propose a conceptual model of hydrologic flow paths in humid tropical systems that can explain previously observed disparities in seasonal storage and runoff with respect to land use/land cover.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.