Uteroplacental insufficiency in the rat restricts fetal growth, impairs mammary development, compromising postnatal growth; and increases adult BP. The roles of prenatal and postnatal nutritional restraint on later BP and nephron endowment in offspring from mothers that underwent bilateral uterine vessel ligation (restricted) on day 18 of pregnancy were examined. Sham surgery (control) and a group of rats with reduced litter size (reduced; litter size reduced at birth to five, equivalent to restricted group) were used as controls. Offspring (control, reduced, and restricted) were cross-fostered on postnatal day 1 onto a control (normal lactation) or restricted (impaired lactation) mother. BP in male offspring was determined by tail cuff at 8, 12, and 20 wk of age, with glomerular number and volume (Cavalieri/Physical Dissector method) and renal angiotensin II type 1 receptor (AT 1 R) mRNA expression (real-time PCR) determined at 6 mo. Restricted-on-restricted male offspring developed hypertension (؉16 mmHg) by 20 wk together with a nephron deficit (؊26%) and glomerular hypertrophy (P < 0.05). In contrast, providing a normal lactational environment to restricted offspring improved postnatal growth and prevented the nephron deficit and hypertension. Reduced-on-restricted pups that were born of normal weight but with impaired growth during lactation subsequently grew faster, developed hypertension (؉16 mmHg), had increased AT 1A R and AT 1B R mRNA expression (P < 0.05), but had no nephron deficit. Our study identifies the prenatal and postnatal nutritional environments in the programming of adult hypertension, associated with distinct renal changes. It is shown for the first time that a prenatally induced nephron deficit can be restored by correcting growth restriction during lactation.
Impaired growth in utero predicts a low nephron number and high blood pressure later in life as does slowed or accelerated growth after a normal birth weight. We measured the effects of early postnatal growth restriction, with or without prenatal growth restriction, on blood pressure and nephron number in male rat offspring. Bilateral uterine artery and vein ligation were performed to induce uteroplacental insufficiency (Restricted) on day 18 of pregnancy. Postnatal growth restriction was induced in a subset of sham operated control animals by reducing the number of pups at birth to that of the Restricted group (Reduced Litter). Compared to Controls, Restricted pups were born smaller while Reduced Litter pups weighed less by postnatal day 3 and both groups remained lighter throughout lactation. By 10 weeks of age all animals were of similar weight but the Reduced Litter rats had elevated blood pressure. At 22 weeks, Restricted but not Reduced Litter offspring were smaller and the blood pressure was increased in both groups. Restricted and Reduced Litter groups had fewer glomeruli and greater left ventricular mass than Controls. These results suggest that restriction of both perinatal and early postnatal growth increase blood pressure in male offspring. This study also demonstrates that the early postnatal period is a critical time for nephron endowment in the rat.
Intrauterine growth restriction and accelerated postnatal growth predict increased risk of diabetes. Uteroplacental insufficiency in the rat restricts fetal growth but also impairs mammary development and postnatal growth. We used cross fostering to compare the influence of prenatal and postnatal nutritional restraint on adult glucose tolerance, insulin secretion, insulin sensitivity, and hypothalamic neuropeptide Y content in Wistar Kyoto rats at 6 months of age. Bilateral uterine vessel ligation (restricted) to induce uteroplacental insufficiency or sham surgery (control) was performed on d-18 gestation. Control, restricted, and reduced (reducing litter size of controls to match restricted) pups were cross fostered onto a control or restricted mother 1 d after birth. Restricted pups were born small compared with controls. Restricted males, but not females, remained lighter up to 6 months, regardless of postnatal environment. By 10 wk, restricted-on-restricted males ate more than controls. At 6 months restricted-on-restricted males had increased hypothalamic neuropeptide Y content compared with other groups, and together with reduced-on-restricted males had increased retroperitoneal fat weight (percent body weight) compared with control-on-controls. Restricted-on-restricted males had impaired glucose tolerance, reduced first-phase insulin secretion, but unaltered insulin sensitivity, compared with control-on-controls. In males, being born small and exposed to an impaired lactational environment adversely affects adult glucose tolerance and first-phase insulin secretion, but improving lactation partially ameliorates this condition. This study identifies early life as a target for intervention to prevent later diabetes after prenatal restraint.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.