Progress in computing power and advances in medical imaging over recent decades have culminated in new opportunities for artificial intelligence (AI), computer vision, and using radiomics to facilitate clinical decision-making. These opportunities are growing in medical specialties, such as radiology, pathology, and oncology. As medical imaging and pathology are becoming increasingly digitized, it is recently recognized that harnessing data from digital images can yield parameters that reflect the underlying biology and physiology of various malignancies. This greater understanding of the behaviour of cancer can potentially improve on therapeutic strategies. In addition, the use of AI is particularly appealing in oncology to facilitate the detection of malignancies, to predict the likelihood of tumor response to treatments, and to prognosticate the patients' risk of cancer-related mortality. AI will be critical for identifying candidate biomarkers from digital imaging and developing robust and reliable predictive models. These models will be used to personalize oncologic treatment strategies, and identify confounding variables that are related to the complex biology of tumors and diversity of patient-related factors (ie, mining ''big data''). This commentary describes the growing body of work focussed on AI for precision oncology. Advances in AI-driven
Breast cancer is currently the second most common cause of cancer-related death in women. Presently, the clinical benchmark in cancer diagnosis is tissue biopsy examination. However, the manual process of histopathological analysis is laborious, time-consuming, and limited by the quality of the specimen and the experience of the pathologist. This study's objective was to determine if deep convolutional neural networks can be trained, with transfer learning, on a set of histopathological images independent of breast tissue to segment tumor nuclei of the breast. Various deep convolutional neural networks were evaluated for the study, including U-Net, Mask R-CNN, and a novel network (GB U-Net). The networks were trained on a set of Hematoxylin and Eosin (H&E)-stained images of eight diverse types of tissues. GB U-Net demonstrated superior performance in segmenting sites of invasive diseases (AJI = 0.53, mAP = 0.39 & AJI = 0.54, mAP = 0.38), validated on two hold-out datasets exclusively containing breast tissue images of approximately 7,582 annotated cells. The results of the networks, trained on images independent of breast tissue, demonstrated that tumor nuclei of the breast could be accurately segmented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.