We assessed the net forces created when towing swimmers while gliding and kicking underwater to establish an appropriate speed for initiating underwater kicking, and the most effective gliding position and kicking technique to be applied after a turn. Sixteen experienced male swimmers of similar body shape were towed by a motorized winch and pulley system. A load cell measured net force (propulsive force - drag force) at speeds of 1.6, 1.9, 2.2, 2.5 and 3.1 m x s(-1). At each speed, the swimmers performed a prone streamline glide, a lateral streamline glide, a prone freestyle kick, a prone dolphin kick and a lateral dolphin kick. A two-way repeated-measures analysis of variance revealed significant differences between the gliding and kicking conditions at different speeds. The results demonstrated an optimal range of speeds (1.9 to 2.2 m x s(-1)) at which to begin underwater kicking to prevent energy loss from excessive active drag. No significant differences were found between the prone and lateral streamline glide positions or between the three underwater kicking techniques. Therefore, there appears to be no significant advantage in using one streamlining technique over another or in using one kicking style over another.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.