The capacity for groups to exhibit collective intelligence is an often-cited advantage of group living. Previous studies have shown that social organisms frequently benefit from pooling imperfect individual estimates. However, in principle, collective intelligence may also emerge from interactions between individuals, rather than from the enhancement of personal estimates. Here, we reveal that this emergent problem solving is the predominant mechanism by which a mobile animal group responds to complex environmental gradients. Robust collective sensing arises at the group level from individuals modulating their speed in response to local, scalar, measurements of light and through social interaction with others. This distributed sensing requires only rudimentary cognition and thus could be widespread across biological taxa, in addition to being appropriate and cost-effective for robotic agents.
Animals often travel in groups, and their navigational decisions can be influenced by social interactions. Both theory and empirical observations suggest that such collective navigation can result in individuals improving their ability to find their way and could be one of the key benefits of sociality for these species. Here, we provide an overview of the potential mechanisms underlying collective navigation, review the known, and supposed, empirical evidence for such behaviour and highlight interesting directions for future research. We further explore how both social and collective learning during group navigation could lead to the accumulation of knowledge at the population level, resulting in the emergence of migratory culture.This article is part of the theme issue ‘Collective movement ecology’.
Anadromous salmon (genera Oncorhynchus and Salmo) spend much of their lives feeding in productive northern oceans and then return home to natal sites for reproduction with remarkable accuracy. The mechanisms used for navigation by individuals during migrations are thought to include geomagnetic, celestial and olfactory cues, but rarely are social interactions between individuals considered. Mounting evidence from other taxa indicates that individuals in larger groups can better sense and respond to environmental cues, thus potentially increasing their ability to navigate. Here, we propose that salmon might similarly benefit from col lective navigation on their homeward journey. To explore this, we compiled data from multiple studies and found strong evidence that rates of successful homing increase with population abundance, consistent with collective navigation. We then discuss how collective navigation could benefit salmon during each stage of their seaward and homeward migrations, and complement this with a review of salmon sociality. Next, we analyse historic high seas catch records and provide new insight into schooling structure of salmon in the marine environment. We argue that collective navigation likely represents a presently under appreciated Fish and Fisheries ; 17 (2016), 2. -S. 525-542 https://dx.doi.org/10.1111 mechanism enhancing the navigational ability of salmon as well as other migra tory species, and outline critical tests of our hypothesis.
Social interactions are a significant factor that influence the decision-making of species ranging from humans to bacteria. In the context of animal migration, social interactions may lead to improved decision-making, greater ability to respond to environmental cues, and the cultural transmission of optimal routes. Despite their significance, the precise nature of social interactions in migrating species remains largely unknown. Here we deploy unmanned aerial systems to collect aerial footage of caribou as they undertake their migration from Victoria Island to mainland Canada. Through a Bayesian analysis of trajectories we reveal the fine-scale interaction rules of migrating caribou and show they are attracted to one another and copy directional choices of neighbours, but do not interact through clearly defined metric or topological interaction ranges. By explicitly considering the role of social information on movement decisions we construct a map of near neighbour influence that quantifies the nature of information flow in these herds. These results will inform more realistic, mechanism-based models of migration in caribou and other social ungulates, leading to better predictions of spatial use patterns and responses to changing environmental conditions. Moreover, we anticipate that the protocol we developed here will be broadly applicable to study social behaviour in a wide range of migratory and non-migratory taxa.This article is part of the theme issue ‘Collective movement ecology’.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.