In the southern Appalachians, artificial nest-boxes are used to survey for the endangered Carolina northern flying squirrel (CNFS; Glaucomys sabrinus coloratus), a disjunct subspecies associated with high elevation (>1385 m) forests. Using environmental parameters diagnostic of squirrel habitat, we created 35 a priori occupancy models in the program PRESENCE for boxes surveyed in western North Carolina, 1996−2011. Our best approximating model showed CNFS denning associated with sheltered landforms and montane conifers, primarily red spruce Picea rubens. As sheltering decreased, decreasing distance to conifers was important. Area with a high probability (>0.5) of occupancy was distributed over 18 662 ha of habitat, mostly across 10 mountain ranges. Because nest-box surveys underrepresented areas >1750 m and CNFS forage in conifers, we combined areas of high occupancy with conifer GIS coverages to create an additional distribution model of likely habitat. Regionally, above 1385 m, we determined that 31 795 ha could be occupied by CNFS. Known occupied patches ranged from <50 ha in the Long Hope Valley in North Carolina to approximately 20 000 ha in the Great Smoky Mountains National Park along the North Carolina−Tennessee boundary. These findings should allow managers to better define, protect and enhance existing CNFS habitat and provide a basis for future surveys. Owing to model biases, we view this as only a first approximation. Further research combining den selection with foraging habitat use across the full range of elevations, landforms and forest types is needed to increase predictive accuracy of CNFS distribution and sub-population viability.
The northern hardwood forest type is an important habitat component for the endangered Carolina northern flying squirrel (CNFS;Glaucomys sabrinus coloratus) for den sites and corridor habitats between boreo-montane conifer patches foraging areas. Our study related terrain data to presence of northern hardwood forest type in the recovery areas of CNFS in the southern Appalachian Mountains of western North Carolina, eastern Tennessee, and southwestern Virginia. We recorded overstory species composition and terrain variables at 338 points, to construct a robust, spatially predictive model. Terrain variables analyzed included elevation, aspect, slope gradient, site curvature, and topographic exposure. We used an information-theoretic approach to assess seven models based on associations noted in existing literature as well as an inclusive global model. Our results indicate that, on a regional scale, elevation, aspect, and topographic exposure index (TEI) are significant predictors of the presence of the northern hardwood forest type in the southern Appalachians. Our elevation + TEI model was the best approximating model (the lowest AICc score) for predicting northern hardwood forest type correctly classifying approximately 78% of our sample points. We then used these data to create region-wide predictive maps of the distribution of the northern hardwood forest type within CNFS recovery areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.