The horn fly, Haematobia irritans, is one of the most economically important pests of cattle. Insecticides have been a major element of horn fly management programs. Growing concerns with insecticide resistance, insecticide residues on farm products, and non-availability of new generation insecticides, are serious issues for the livestock industry. Alternative horn fly control methods offer the promise to decrease the use of insecticides and reduce the amount of insecticide residues on livestock products and give an impetus to the organic livestock farming segment. The horn fly, an obligatory blood feeder, requires the help of microflora to supply additional nutrients and metabolize the blood meal. Recent advancements in DNA sequencing methodologies enable researchers to examine the microflora diversity independent of culture methods. We used the bacterial 16S tag-encoded FLX-titanium amplicon pyrosequencing (bTEFAP) method to carry out the classification analysis of bacterial flora in adult female and male horn flies and horn fly eggs. The bTEFAP method identified 16S rDNA sequences in our samples which allowed the identification of various prokaryotic taxa associated with the life stage examined. This is the first comprehensive report of bacterial flora associated with the horn fly using a culture-independent method. Several rumen, environmental, symbiotic and pathogenic bacteria associated with the horn fly were identified and quantified. This is the first report of the presence of Wolbachia in horn flies of USA origin and is the first report of the presence of Rikenella in an obligatory blood feeding insect.
As it feeds upon cattle, Rhipicephalus (Boophilus) microplus is capable of transmitting a number of pathogenic organisms, including the apicomplexan hemoparasite Babesia bovis, a causative agent of bovine babesiosis. The R. microplus female gut transcriptome was studied for two cohorts: adult females feeding on a bovine host infected with B. bovis and adult females feeding on an uninfected bovine. RNA was purified and used to generate a subtracted cDNA library from B. bovis-infected female gut, and 4,077 expressed sequence tags (ESTs) were sequenced. Gene expression was also measured by a microarray designed from the publicly available R. microplus gene index: BmiGI Version 2. We compared gene expression in the tick gut from females feeding upon an uninfected bovine to gene expression in tick gut from females feeding upon a splenectomized bovine infected with B. bovis. Thirty-three ESTs represented on the microarray were expressed at a higher level in female gut samples from the ticks feeding upon a B. bovis-infected calf compared to expression levels in female gut samples from ticks feeding on an uninfected calf. Forty-three transcripts were expressed at a lower level in the ticks feeding upon B. bovis-infected female guts compared with expression in female gut samples from ticks feeding on the uninfected calf. These array data were used as initial characterization of gene expression associated with the infection of R. microplus by B. bovis.
The cattle tick, Rhipicephalus (Boophilus) microplus, is a pest which causes multiple health complications in cattle. The G protein-coupled receptor (GPCR) super-family presents a candidate target for developing novel tick control methods. However, GPCRs share limited sequence similarity among orthologous family members, and there is no reference genome available for R. microplus. This limits the effectiveness of alignment-dependent methods such as BLAST and Pfam for identifying GPCRs from R. microplus. However, GPCRs share a common structure consisting of seven transmembrane helices. We present an analysis of the R. microplus synganglion transcriptome using a combination of structurally-based and alignment-free methods which supplement the identification of GPCRs by sequence similarity. TMHMM predicts the number of transmembrane helices in a protein sequence. GPCRpred is a support vector machine-based method developed to predict and classify GPCRs using the dipeptide composition of a query aminoacid sequence. These two bioinformatic tools were applied to our transcriptome assembly of the cattle tick synganglion. Together, BLAST and Pfam identified 85 unique contigs as encoding partial or full length candidate cattle tick GPCRs. Collectively, TMHMM and GPCRpred identified 27 additional GPCR candidates that BLAST and Pfam missed. This demonstrates that the addition of structurally-based and alignment-free bioinformatic approaches to transcriptome annotation and analysis produces a greater collection of prospective GPCRs than an analysis based solely upon methodologies dependent upon sequence alignment and similarity.
BackgroundCattle babesiosis is a tick-borne disease of cattle with the most severe form of the disease caused by the apicomplexan, Babesia bovis. Babesiosis is transmitted to cattle through the bite of infected cattle ticks of the genus Rhipicephalus. The most prevalent species is Rhipicephalus (Boophilus) microplus, which is distributed throughout the tropical and subtropical countries of the world. The transmission of B. bovis is transovarian and a previous study of the R. microplus ovarian proteome identified several R. microplus proteins that were differentially expressed in response to infection. Through various approaches, we studied the reaction of the R. microplus ovarian transcriptome in response to infection by B. bovis.MethodsA group of ticks were allowed to feed on a B. bovis-infected splenectomized calf while a second group fed on an uninfected splenectomized control calf. RNA was purified from dissected adult female ovaries of both infected and uninfected ticks and a subtracted B. bovis-infected cDNA library was synthesized, subtracting with the uninfected ovarian RNA. Four thousand ESTs were sequenced from the ovary subtracted library and annotated.ResultsThe subtracted library dataset assembled into 727 unique contigs and 2,161 singletons for a total of 2,888 unigenes, Microarray experiments designed to detect B. bovis-induced gene expression changes indicated at least 15 transcripts were expressed at a higher level in ovaries from ticks feeding upon the B. bovis-infected calf as compared with ovaries from ticks feeding on an uninfected calf. We did not detect any transcripts from these microarray experiments that were expressed at a lower level in the infected ovaries compared with the uninfected ovaries. Using the technique called serial analysis of gene expression, 41 ovarian transcripts from infected ticks were differentially expressed when compared with transcripts of controls.ConclusionCollectively, our experimental approaches provide the first comprehensive profile of the R. microplus ovarian transcriptome responding to infection by B. bovis. This dataset should prove useful in molecular studies of host-pathogen interactions between this tick and its apicomplexan parasite.
BackgroundCattle babesiosis is a tick-borne disease of cattle that has severe economic impact on cattle producers throughout the world’s tropical and subtropical countries. The most severe form of the disease is caused by the apicomplexan, Babesia bovis, and transmitted to cattle through the bite of infected cattle ticks of the genus Rhipicephalus, with the most prevalent species being Rhipicephalus (Boophilus) microplus. We studied the reaction of the R. microplus larval transcriptome in response to infection by B. bovis.MethodsTotal RNA was isolated for both uninfected and Babesia bovis-infected larval samples. Subtracted libraries were prepared by subtracting the B. bovis-infected material with the uninfected material, thus enriching for expressed genes in the B. bovis-infected sample. Expressed sequence tags from the subtracted library were generated, assembled, and sequenced. To complement the subtracted library method, differential transcript expression between samples was also measured using custom high-density microarrays. The microarray probes were fabricated using oligonucleotides derived from the Bmi Gene Index database (Version 2). Array results were verified for three target genes by real-time PCR.ResultsTicks were allowed to feed on a B. bovis-infected splenectomized calf and on an uninfected control calf. RNA was purified in duplicate from whole larvae and subtracted cDNA libraries were synthesized from Babesia-infected larval RNA, subtracting with the corresponding uninfected larval RNA. One thousand ESTs were sequenced from the larval library and the transcripts were annotated. We used a R. microplus microarray designed from a R. microplus gene index, BmiGI Version 2, to look for changes in gene expression that were associated with infection of R. microplus larvae. We found 24 transcripts were expressed at a statistically significant higher level in ticks feeding upon a B. bovis-infected calf contrasted to ticks feeding on an uninfected calf. Six transcripts were expressed at a statistically significant lower level in ticks feeding upon a B. bovis-infected calf contrasted to ticks feeding on an uninfected calf.ConclusionOur experimental approaches yielded specific differential gene expression associated with the infection of R. microplus by B. bovis. Overall, an unexpectedly low number of transcripts were found to be differentially expressed in response to B. bovis infection. Although the BmiGI Version 2 gene index (http://compbio.dfci.harvard.edu/tgi/cgi-bin/tgi/gimain.pl?gudb=b_microplus) was a useful database to help assign putative function to some transcripts, a majority of the differentially expressed transcripts did not have annotation that was useful for assignment of function and specialized bioinformatic approaches were necessary to increase the information from these transcriptome experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.