We propose a new coherent state quantum key distribution protocol that eliminates the need to randomly switch between measurement bases. This protocol provides significantly higher secret key rates with increased bandwidths than previous schemes that only make single quadrature measurements. It also offers the further advantage of simplicity compared to all previous protocols which, to date, have relied on switching.
We demonstrate a multipartite protocol to securely distribute and reconstruct a quantum state. A secret quantum state is encoded into a tripartite entangled state and distributed to three players. By collaborating, any two of the three players can reconstruct the state, while individual players obtain nothing. We characterize this (2,3) threshold quantum state sharing scheme in terms of fidelity, signal transfer, and reconstruction noise. We demonstrate a fidelity averaged over all reconstruction permutations of 0.73+/-0.04, a level achievable only using quantum resources.
We investigate experimentally the energy distribution of a single rubidium
atom trapped in a strongly focused dipole trap under various cooling regimes.
Using two different methods to measure the mean energy of the atom, we show
that the energy distribution of the radiatively cooled atom is close to
thermal. We then demonstrate how to reduce the energy of the single atom, first
by adiabatic cooling, and then by truncating the Boltzmann distribution of the
single atom. This provides a non-deterministic way to prepare atoms at low
microKelvin temperatures, close to the ground state of the trapping potential.Comment: 9 pages, 6 figures, published in PR
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.