Newcastle disease is caused by virulent forms of avian paramyxovirus of serotype 1 (APMV-1) and has global economic importance. The disease reached panzootic proportions within two decades after first being identified in 1926 in the United Kingdom and Indonesia and still remains endemic in many countries across the world. Here we review information on the host, temporal, and geographic distribution of APMV-1 genetic diversity based on the evolutionary systematics of the complete coding region of the fusion gene. Strains of APMV-1 are phylogenetically separated into two classes (class I and class II) and further classified into genotypes based on genetic differences. Class I viruses are genetically less diverse, generally present in wild waterfowl, and are of low virulence. Class II viruses are genetically and phenotypically more diverse, frequently isolated from poultry with occasional spillovers into wild birds, and exhibit a wider range of virulence. Waterfowl, cormorants, and pigeons are natural reservoirs of all APMV-1 pathotypes, except viscerotropic velogenic viruses for which natural reservoirs have not been identified. Genotypes I and II within class II include isolates of high and low virulence, the latter often being used as vaccines. Viruses of genotypes III and IX that emerged decades ago are now isolated rarely, but may be found in domestic and wild birds in China. Containing only virulent viruses and responsible for the majority of recent outbreaks in poultry and wild birds, viruses from genotypes V, VI, and VII, are highly mobile and have been isolated on different continents. Conversely, virulent viruses of genotypes XI (Madagascar), XIII (mainly Southwest Asia), XVI (North America) and XIV, XVII and XVIII (Africa) appear to have a more limited geographic distribution and have been isolated predominantly from poultry.
Migration and population genetic data for northern pintails (Anas acuta) and phylogenetic analysis of low pathogenic avian influenza (LPAI) viruses from this host in Alaska suggest that northern pintails are involved in ongoing intercontinental transmission of avian influenza. Here, we further refine this conclusion through phylogenetic analyses which demonstrate that detection of foreign lineage gene segments is spatially dependent and consistent through time. Our results show detection of foreign lineage gene segments to be most likely at sample locations on the Alaska Peninsula and least likely along the Southern Alaska Coast. Asian lineages detected at four gene segments persisted across years, suggesting maintenance in avian hosts that migrate to Alaska each year from Asia or in hosts that remain in Alaska throughout the year. Alternatively, live viruses may persist in the environment and re-infect birds in subsequent seasons.
Prior to the emergence of the A/goose/Guangdong/1/1996 (Gs/GD) H5N1 influenza A virus, the long‐held and well‐supported paradigm was that highly pathogenic avian influenza (HPAI) outbreaks were restricted to poultry, the result of cross‐species transmission of precursor viruses from wild aquatic birds that subsequently gained pathogenicity in domestic birds. Therefore, management agencies typically adopted a prevention, control, and eradication strategy that included strict biosecurity for domestic bird production, isolation of infected and exposed flocks, and prompt depopulation. In most cases, this strategy has proved sufficient for eradicating HPAI. Since 2002, this paradigm has been challenged with many detections of viral descendants of the Gs/GD lineage among wild birds, most of which have been associated with sporadic mortality events. Since the emergence and evolution of the genetically distinct clade 2.3.4.4 Gs/GD lineage HPAI viruses in approximately 2010, there have been further increases in the occurrence of HPAI in wild birds and geographic spread through migratory bird movement. A prominent example is the introduction of clade 2.3.4.4 Gs/GD HPAI viruses from East Asia to North America via migratory birds in autumn 2014 that ultimately led to the largest outbreak of HPAI in the history of the United States. Given the apparent maintenance of Gs/GD lineage HPAI viruses in a global avian reservoir; bidirectional virus exchange between wild and domestic birds facilitating the continued adaptation of Gs/GD HPAI viruses in wild bird hosts; the current frequency of HPAI outbreaks in wild birds globally, and particularly in Eurasia where Gs/GD HPAI viruses may now be enzootic; and ongoing dispersal of AI viruses from East Asia to North America via migratory birds, HPAI now represents an emerging disease threat to North American wildlife. This recent paradigm shift implies that management of HPAI in domestic birds alone may no longer be sufficient to eradicate HPAI viruses from a given country or region. Rather, agencies managing wild birds and their habitats may consider the development or adoption of mitigation strategies to minimize introductions to poultry, to reduce negative impacts on wild bird populations, and to diminish adverse effects to stakeholders using wildlife resources. The main objective of this review is, therefore, to provide information that will assist wildlife managers in developing mitigation strategies or approaches for dealing with outbreaks of Gs/GD HPAI in wild birds in the form of preparedness, surveillance, research, communications, and targeted management actions. Resultant outbreak response plans and actions may represent meaningful steps of wildlife managers toward the use of collaborative and multi‐jurisdictional One Health approaches when it comes to the detection, investigation, and mitigation of emerging viruses at the human‐domestic animal‐wildlife interface.
Japanese encephalitis virus (JEV), a mosquito-borne zoonotic pathogen, is one of the major causes of viral encephalitis. To reduce the impact of Japanese encephalitis among children in the Republic of Korea (ROK), the government established a mandatory vaccination program in 1967. Through the efforts of this program only 0–7 (mean 2.1) cases of Japanese encephalitis were reported annually in the ROK during the period of 1984–2009. However, in 2010 there was an outbreak of 26 confirmed cases of Japanese encephalitis, including 7 deaths. This represented a >12-fold increase in the number of confirmed cases of Japanese encephalitis in the ROK as compared to the mean number reported over the last 26 years and a 3.7-fold increase over the highest annual number of cases during this same period (7 cases). Surveillance of adult mosquitoes was conducted during the 2010 outbreak of Japanese encephalitis in the ROK. A total of 6,328 culicine mosquitoes belonging to 12 species from 5 genera were collected at 6 survey sites from June through October 2010 and assayed by reverse-transcription polymerase chain reaction (RT-PCR) for the presence of JEV. A total of 34/371 pooled samples tested positive for JEV (29/121 Culex tritaeniorhynchus, 4/64 Cx. pipiens, and 1/26 Cx. bitaeniorhynchus) as confirmed by sequencing of the pre-membrane and envelope protein coding genes. The maximum likelihood estimates of JEV positive individuals per 1,000 culicine vectors for Cx. tritaeniorhynchus, Cx. pipiens, and Cx. bitaeniorhynchus were 11.8, 5.6, and 2.8, respectively. Sequences of the JEV pre-membrane and envelope protein coding genes amplified from the culicine mosquitoes by RT-PCR were compared with those of JEV genotypes I-V. Phylogenetic analyses support the detection of a single genotype (I) among samples collected from the ROK in 2010.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.