Contextual stimulus control over instrumental drug-seeking behavior relies on the reconsolidation of context-responsedrug associative memories into long-term memory storage following retrieval-induced destabilization. According to previous studies, the basolateral amygdala (BLA) and dorsal hippocampus (DH) regulate cocaine-related memory reconsolidation; however, it is not known whether these brain regions interact or independently control this phenomenon. To investigate this question, rats were trained to lever press for cocaine reinforcement in a distinct environmental context followed by extinction training in a different context. Rats were then briefly re-exposed to the cocaine-paired context to destabilize cocaine-related memories, or they were exposed to an unpaired context. Immediately thereafter, the rats received unilateral microinfusions of anisomycin (ANI) into the BLA plus baclofen/muscimol (B/M) into the contralateral (BLA/ DH disconnection) or ipsilateral DH, or they received contralateral or ipsilateral microinfusions of vehicle. They then remained in their home cages overnight or for 21 d, followed by additional extinction training and a test of cocaineseeking behavior (nonreinforced active lever responding). BLA/DH disconnection following re-exposure to the cocainepaired context, but not the unpaired context, impaired subsequent drug context-induced cocaine-seeking behavior relative to vehicle or ipsilateral ANI + B/M treatment. Prolonged home cage stay elicited a time-dependent increase, or incubation, of drug-context-induced cocaine-seeking behavior, and BLA/DH disconnection inhibited this incubation effect despite some recovery of cocaine-seeking behavior. Thus, the BLA and DH interact to regulate the reconsolidation of cocaine-related associative memories, thereby facilitating the ability of drug-paired contexts to trigger cocaine-seeking behavior and contributing to the incubation of cocaine-seeking behavior.
The reconsolidation of cocaine memories following retrieval is necessary for the sustained ability of a cocaine-paired environmental context to elicit cocaine seeking. Extracellular signal-regulated kinase (ERK) is an intracellular signaling molecule involved in nucleus accumbens core (NACc)-mediated reconsolidation of Pavlovian cocaine memories. Here, we used a rodent model of drug context-elicited relapse to test the hypothesis that ERK would be similarly required for the reconsolidation of context-response-cocaine memories that underlie drug context-induced reinstatement of instrumental cocaine-seeking behavior, with a focus on the NACc and on the basolateral amygdala (BLA), another important locus for the reconsolidation of cocaine memories. We show that the mitogen-activated protein kinase (MEK)/ERK1/2 inhibitor, U0126 (1.0 μg/0.5 μl/hemisphere), microinfused bilaterally into the BLA--but not the NACc--immediately after brief re-exposure to a previously cocaine-paired context (that is, cocaine-memory reactivation), significantly attenuated subsequent drug context-induced cocaine seeking relative to vehicle (VEH). This effect in the BLA was associated with a transient inhibition of ERK1/2 phosphorylation, and it depended on memory reactivation given that U0126 administered following exposure to a novel context did not alter subsequent cocaine seeking. Furthermore, similar to U0126, baclofen+muscimol-induced (B+M; 106.8/5.7 ng/0.5 μl/hemisphere) neural inactivation of the NACc, following cocaine-memory reactivation, failed to alter subsequent cocaine seeking. These findings demonstrate that ERK activation in the BLA, but not the NACc, is required for the reconsolidation of context-response-cocaine associative memories. Together with prior research, these results suggest that contextual drug-memory reconsolidation in Pavlovian and instrumental settings involves distinct neuroanatomical mechanisms.
Glutamatergic neurotransmission in the dorsal hippocampus (DH) is necessary for drug context-induced reinstatement of cocaineseeking behavior in an animal model of drug relapse. Furthermore, in vitro studies suggest that the Src family of tyrosine kinases critically regulates glutamatergic cellular functions within the DH. Thus, Src-family kinases in the DH may similarly control contextual cocaineseeking behavior. To test this hypothesis, rats were trained to lever press for un-signaled cocaine infusions in a distinct context followed by extinction training in a different context. Cocaine-seeking behavior (non-reinforced active lever pressing) was then assessed in the previously cocaine-paired and extinction contexts after AP5 (N-methyl-D-aspartate glutamate (NMDA) receptor (NMDAR) antagonist; 0.25 or 2.5 mg/0.5 ml/hemisphere), PP2 (Src-family kinase inhibitor; 6.25 or 62.5 ng/0.5 ml/hemisphere), Ro25-6981 (NR2B subunitcontaining NMDAR antagonist; 0.2 or 2 mg/0.5 ml/hemisphere), or vehicle administration into the DH. Administration of AP5, PP2, or Ro25-6981 into the DH dose-dependently impaired drug context-induced reinstatement of cocaine-seeking behavior relative to vehicle, without altering instrumental behavior in the extinction context or food-reinforced instrumental responding and general motor activity in control experiments. Cocaine-seeking behavior during the first 20 min of the test session in the cocaine-paired context was associated with an increase in NR2B subunit activation, and intra-DH PP2 pretreatment disrupted this relationship. Together, these findings suggest that Src-family kinase activation, NMDAR stimulation, and likely Src-family kinase-mediated NR2B subunit-containing NMDAR activation in the DH are necessary for incentive motivational and/or memory processes that promote contextual cocaine-seeking behavior.
Mosaic trisomy 5 is a very rare condition in liveborns, with few cases reported in the last four decades. There are some reports of prenatally diagnosed mosaic trisomy 5 resulting in phenotypically normal offspring, suggesting a low level of mosaicism, but there are also reports associated with multiple congenital anomalies, cardiovascular malformations, and intrauterine growth restriction. We report an infant male diagnosed with mosaic trisomy 5 (5/15 cells) via amniocentesis. The patient was subsequently found to have uniparental disomy 5 (UPD5) by postnatal chromosome microarray, but high-resolution chromosome analysis on peripheral blood did not identify trisomy 5. Dysmorphic features included a tall forehead with low anterior hairline, hypertelorism, low-set ears, and a prominent nose and midface. Other anomalies included bilateral bifid thumbs, hypospadias, a perineal fistula, unilateral multicystic kidney, and decreased subcutaneous fat with loose skin. He had complex congenital heart disease consisting of ventricular and atrial septal defects and polyvalvular defects. The patient died at age one after a prolonged admission. We add this case to the literature with the added benefit of data from a postnatal microarray, which was not available in other cases, to broaden the phenotype of mosaic trisomy 5 and UPD5.With the current available technology, we stress the importance of postnatal genetic testing to confirm prenatal cytogenetic findings in order to further define such phenotypes. This will provide the most accurate information and counseling to affected families.
Rationale Chronic cocaine exposure produces unconditioned enhancement in impulsive decision making; however, little is known about the effects of cocaine-paired conditioned stimuli on this behavior. Thus, this study explored the effects of cocaine-paired contextual stimuli on impulsive decision making and the contribution of nicotinic acetylcholine receptors (nAChRs) to this phenomenon. Methods Rats were trained to achieve stable performance on a delay discounting task, which involved lever press-based choice between a single food pellet (small reward) available immediately and three food pellets (large reward) available after a 10-, 20-, 40-, or 60-s time delay. Rats then received Pavlovian context-cocaine (15 mg/kg, i.p.) and context-saline (1 ml/kg, i.p.) pairings in two other, distinct contexts. Subsequently, delay discounting task performance was assessed in the previously cocaine-paired or saline-paired context following pretreatment with saline or cocaine (15 mg/kg, Experiment 1) or with saline or the nAChR antagonist, mecamylamine (0.2, 2 mg/kg, Experiment 2), using counterbalanced within-subjects testing designs. Results Independent of cocaine pretreatment, rats exhibited greater decrease in preference for the large reward as a function of delay duration in the cocaine-paired context, relative to the saline-paired context. Furthermore, systemic mecamylamine pretreatment dose-dependently attenuated the decrease in preference for the large reward in the cocaine-paired context, but not in the saline-paired context, as compared to saline. Conclusion Cocaine-paired contextual stimuli evoke a state of impulsive decision making, which requires nAChR stimulation. Drug context-induced impulsivity likely increases the propensity for drug relapse in cocaine users, making the nAChR an interesting target for drug relapse prevention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.