Administration of anesthetic agents fundamentally shifts the responsibility for maintenance of homeostasis from the patient and their intrinsic physiological regulatory mechanisms to the anesthesiologist. Continuous delivery of oxygen and nutrients to the brain is necessary to prevent irreversible injury and arises from a complex series of regulatory mechanisms that ensure uninterrupted cerebral blood flow. Our understanding of these regulatory mechanisms and the effects of anesthetics on them has been driven by the tireless work of pioneers in the field. It is of paramount importance that the anesthesiologist shares this understanding. Herein, we will review the physiological determinants of cerebral blood flow and how delivery of anesthesia impacts these processes.
Protein phosphatase 2A- (PP2A-) catalyzed dephosphorylation of target substrate proteins is widespread and critical for cellular function. PP2A is predominantly found as a heterotrimeric complex of a catalytic subunit (C), a scaffolding subunit (A), and one member of 4 families of regulatory subunits (B). Substrate specificity of the holoenzyme complex is determined by the subcellular locale the complex is confined to, selective incorporation of the B subunit, interactions with endogenous inhibitory proteins, and specific intermolecular interactions between PP2A and target substrates. Here, we discuss recent studies that have advanced our understanding of the molecular determinants for PP2A substrate specificity.
Background:The mitochondrial fission enzyme dynamin-related protein 1 (Drp1) is regulated via reversible phosphorylation of Ser-656. Results: The Drp1 LXVP motif mediates dephosphorylation and activation by calcineurin (CaN), which influences mitochondrial morphology and survival post-injury in neurons.
Conclusion:The CaN-Drp1 signaling axis can be detrimental to injured neurons. Significance: The CaN-Drp1 complex may be a target for neuroprotective therapeutic intervention.
Nascent evidence indicates that mitochondrial fission, fusion, and transport are subject to intricate regulatory mechanisms that intersect with both well-characterized and emerging signaling pathways. While it is well established that mutations in components of the mitochondrial fission/fusion machinery can cause neurological disorders, relatively little is known about upstream regulators of mitochondrial dynamics and their role in neurodegeneration. Here, we review posttranslational regulation of mitochondrial fission/fusion enzymes, with particular emphasis on dynamin-related protein 1 (Drp1), as well as outer mitochondrial signaling complexes involving protein kinases and phosphatases. We also review recent evidence that mitochondrial dynamics has profound consequences for neuronal development and synaptic transmission and discuss implications for clinical translation.
Summary
The neuron-specific Bβ2 regulatory subunit of protein phosphatase 2A (PP2A), a product of the spinocerebellar ataxia type 12 disease gene PPP2R2B, recruits heterotrimeric PP2A to the outer mitochondrial membrane (OMM) through its N-terminal mitochondrial targeting sequence. OMM-localized PP2A/Bβ2 induces mitochondrial fragmentation, thereby increasing susceptibility to neuronal insults. Here, we report that PP2A/Bβ2 activates the mitochondrial fission enzyme dynamin-related protein 1 (Drp1) by dephosphorylating Ser656, a highly conserved inhibitory phosphorylation site targeted by the neuroprotective PKA/AKAP1 kinase complex. We further show that translocation of PP2A/Bβ2 to mitochondria is regulated by phosphorylation of Bβ2 at three N-terminal Ser residues. Phosphomimetic substitution of Ser20-22 renders Bβ2 cytosolic, blocks Drp1 dephosphorylation and mitochondrial fragmentation, and abolishes the ability of Bβ2 overexpression to induce apoptosis in cultured hippocampal neurons. Ala substitution of Ser20-22 to prevent phosphorylation has the opposite effect, promoting association of Bβ2 with mitochondria, Drp1 dephosphorylation, mitochondrial fission, and neuronal death. OMM translocation of Bβ2 can be attenuated by mutation of residues in close proximity to the catalytic site, but only if Ser20-22 are available for phosphorylation, suggesting that PP2A/Bβ2 autodephosphorylation is necessary for OMM association, likely by uncovering the net positive charge of the mitochondrial targeting sequence. These results reveal another layer of complexity in the regulation of the mitochondrial fission/fusion equilibrium and its physiological and pathophysiological consequences in the nervous system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.