The goal of this work is to generate large statistically representative data sets to train machine learning models for disruption prediction provided by data from few existing discharges. Such a comprehensive training database is important to achieve satisfying and reliable prediction results in artificial neural network classifiers. Here, we aim for a robust augmentation of the training database for multivariate time series data using Student
$t$
process regression. We apply Student
$t$
process regression in a state space formulation via Bayesian filtering to tackle challenges imposed by outliers and noise in the training data set and to reduce the computational complexity. Thus, the method can also be used if the time resolution is high. We use an uncorrelated model for each dimension and impose correlations afterwards via colouring transformations. We demonstrate the efficacy of our approach on plasma diagnostics data of three different disruption classes from the DIII-D tokamak. To evaluate if the distribution of the generated data is similar to the training data, we additionally perform statistical analyses using methods from time series analysis, descriptive statistics and classic machine learning clustering algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.