There have been numerous reports that the impact of the ongoing COVID-19 epidemic has disproportionately impacted traditionally vulnerable communities associated with neighborhood attributes, such as the proportion of racial and ethnic minorities, migrants, and the lower income households. The goal of this ecological cross-sectional study is to examine the demographic and economic nature of spatial hot and cold spots of SARS-CoV-2 rates in New York City and Chicago as of April 13, 2020 using data from the New
Background: Proximity to parks and physical activity sites has been linked to an increase in active behaviors, and positive impacts on health outcomes such as lower rates of cardiovascular disease, diabetes, and obesity. Since populations with a low socio-economic status as well as racial and ethnic minorities tend to experience worse health outcomes in the USA, access to parks and physical activity sites may be an environmental justice issue. Geographic Information systems were used to conduct quantitative and qualitative analyses of park accessibility in New York City, which included kernel density estimation, ordinary least squares (global) regression, geographically weighted (local) regression, and longitudinal case studies, consisting of field work and archival research. Accessibility was measured by both density of park acreage and density of physical activity sites. Independent variables included percent non-Hispanic black, percent Hispanic, percent below poverty, percent of adults without high school diploma, percent with limited English-speaking ability, and population density.
This paper demonstrates the importance of disaggregating population data aggregated by census tracts or other units, for more realistic population distribution/location. A newly-developed mapping method, the Cadastral-based Expert Dasymetric System (CEDS), calculates population in hyperheterogeneous urban areas better than traditional mapping techniques. A case study estimating population potentially impacted by flood hazard in New York City compares the impacted population determined by CEDS with that derived by centroid-containment method and filtered areal weighting interpolation. Compared to CEDS, 37 percent and 72 percent fewer people are estimated to be at risk from floods city-wide, using conventional areal weighting of census data, and centroid-containment selection, respectively. Undercounting of impacted population could have serious implications for emergency management and disaster planning. Ethnic/racial populations are also spatially disaggregated to determine any environmental justice impacts with flood risk. Minorities are disproportionately undercounted using traditional methods. Underestimating more vulnerable subpopulations impairs preparedness and relief efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.