Diffusion weighted (DW) MRI facilitates non-invasive quantification of tissue microstructure and, in combination with appropriate signal processing, three-dimensional estimates of fibrous orientation. In recent years, attention has shifted from the diffusion tensor model, which assumes a unimodal Gaussian diffusion displacement profile to recover fibre orientation (with various well-documented limitations), towards more complex high angular resolution diffusion imaging (HARDI) analysis techniques.Spherical deconvolution (SD) approaches assume that the fibre orientation density function (fODF) within a voxel can be obtained by deconvolving a ‘common’ single fibre response function from the observed set of DW signals. In practice, this common response function is not known a priori and thus an estimated fibre response must be used. Here the establishment of this single-fibre response function is referred to as ‘calibration’. This work examines the vulnerability of two different SD approaches to inappropriate response function calibration: (1) constrained spherical harmonic deconvolution (CSHD)—a technique that exploits spherical harmonic basis sets and (2) damped Richardson–Lucy (dRL) deconvolution—a technique based on the standard Richardson–Lucy deconvolution.Through simulations, the impact of a discrepancy between the calibrated diffusion profiles and the observed (‘Target’) DW-signals in both single and crossing-fibre configurations was investigated. The results show that CSHD produces spurious fODF peaks (consistent with well known ringing artefacts) as the discrepancy between calibration and target response increases, while dRL demonstrates a lower over-all sensitivity to miscalibration (with a calibration response function for a highly anisotropic fibre being optimal). However, dRL demonstrates a reduced ability to resolve low anisotropy crossing-fibres compared to CSHD. It is concluded that the range and spatial-distribution of expected single-fibre anisotropies within an image must be carefully considered to ensure selection of the appropriate algorithm, parameters and calibration. Failure to choose the calibration response function carefully may severely impact the quality of any resultant tractography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.