The integration of nanophotonics and atomic physics has been a long-sought goal that would open new frontiers for optical physics, including novel quantum transport and many-body phenomena with photon-mediated atomic interactions. Reaching this goal requires surmounting diverse challenges in nanofabrication and atomic manipulation. Here we report the development of a novel integrated optical circuit with a photonic crystal capable of both localizing and interfacing atoms with guided photons. Optical bands of a photonic crystal waveguide are aligned with selected atomic transitions. From reflection spectra measured with average atom number N ¼ 1:1 AE 0:4, we infer that atoms are localized within the waveguide by optical dipole forces. The fraction of single-atom radiative decay into the waveguide is G 1D /G 0 C(0.32 ± 0.08), where G 1D is the rate of emission into the guided mode and G 0 is the decay rate into all other channels. G 1D /G 0 is unprecedented in all current atom-photon interfaces.
We present and characterize fiber mirrors and a miniaturized ion-trap design developed to integrate a fiber-based Fabry-Perot cavity (FFPC) with a linear Paul trap for use in cavity-QED experiments with trapped ions. Our fiber-mirror fabrication process not only enables the construction of FFPCs with small mode volumes, but also allows us to minimize the influence of the dielectric fiber mirrors on the trapped-ion pseudopotential. We discuss the effect of clipping losses for long FFPCs and the effect of angular and lateral displacements on the coupling efficiencies between cavity and fiber. Optical profilometry allows us to determine the radii of curvature and ellipticities of the fiber mirrors. From finesse measurements, we infer a single-atom cooperativity of up to 12 for FFPCs longer than 200 μm in length; comparison to cavities constructed with reference substrate mirrors produced in the same coating run indicates that our FFPCs have similar scattering losses. We characterize the birefringence of our fiber mirrors, finding that careful fiber-mirror selection enables us to construct FFPCs with degenerate polarization modes. As FFPCs are novel devices, we describe procedures developed for handling, aligning, and cleaning them. We discuss experiments to anneal fiber mirrors and explore the influence of the atmosphere under which annealing occurs on coating losses, finding that annealing under vacuum increases the losses for our reference substrate mirrors. X-ray photoelectron spectroscopy measurements indicate that these losses may be attributable to oxygen depletion in the mirror coating. Special design considerations enable us to introduce a FFPC into a trapped ion setup. Our unique linear Paul trap design provides clearance for such a cavity and is miniaturized to shield trapped ions from the dielectric fiber mirrors. We numerically calculate the trap potential in the absence of fibers. In the experiment additional electrodes can be used to compensate distortions of the potential due to the fibers. Home-built fiber feedthroughs connect the FFPC to external optics, and an integrated nanopositioning system affords the possibility of retracting or realigning the cavity without breaking vacuum.
Optical metasurfaces are two-dimensional arrays of meta-atoms that modify different characteristics of light such as phase, amplitude, and polarization. One intriguing feature that distinguishes them from conventional optical components is their multifunctional capability. However, multifunctional metasurfaces with efficiencies approaching those of their single-functional counterparts require more degrees of freedom. Here we show that 2.5D metastructures, which are stacked layers of interacting metasurface layers, provide sufficient degrees of freedom to implement efficient multifunctional devices. The large number of design parameters and their intricate intercoupling make the design of multifunctional 2.5D metastructures a complex task, and unit-cell approaches to metasurface design produce suboptimal devices. We address this issue by designing 2.5D metastructures using the adjoint optimization technique. Instead of designing unit cells individually, our technique considers the structure as a whole, accurately accounting for interpost and inter-layer coupling. As proof of concept, we experimentally demonstrate a double-wavelength metastructure, designed using adjoint optimization, that has significantly higher efficiencies than a similar device designed with a simplified approach conventionally used in metasurface design. The 2.5D metastructure architecture empowered by the optimization-based design technique is a general platform for realizing high-performance multifunctional components and systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.