Bicuspid aortic valves (BAVs) generate flow abnormalities that may promote aortopathy. While positive helix fraction (PHF) index, flow angle (θ), flow displacement (d) and wall shear stress (WSS) exhibit abnormalities in dilated BAV aortas, it is unclear whether those anomalies stem from the abnormal valve anatomy or the dilated aorta. Therefore, the objective of this study was to quantify the early impact of different BAV morphotypes on aorta hemodynamics prior to dilation. Fluid-structure interaction models were designed to quantify standard peak-systolic flow metrics and temporal WSS characteristics in a realistic non-dilated aorta connected to functional tricuspid aortic valve (TAV) and type-I BAVs. While BAVs generated increased helicity (PHF>0.68) in the middle ascending aorta (AA), larger systolic flow skewness (θ>11.2°) and displacement (d>6.8mm) relative to the TAV (PHF=0.51; θ<5.5°; d<3.3mm), no distinct pattern was observed between morphotypes. In contrast, WSS magnitude and directionality abnormalities were BAV morphotype- and site-dependent. Type-I BAVs subjected the AA convexity to peak-systolic WSS overloads (up to 1014% difference vs. TAV). While all BAVs increased WSS unidirectionality on the proximal AA relative to the TAV, the most significant abnormality was achieved by the BAV with left-right-coronary cusp fusion on the wall convexity (up to 0.26 decrease in oscillatory shear index vs. TAV). The results indicate the existence of strong hemodynamic abnormalities in non-dilated type-I BAV AAs, their colocalization with sites vulnerable to dilation and the superior specificity of WSS metrics over global hemodynamic metrics to the valve anatomy.
The bicuspid aortic valve (BAV) is a major risk factor for secondary aortopathy such as aortic dilation. The heterogeneous BAV morphotypes [left-right-coronary cusp fusion (LR), right-non-coronary cusp fusion (RN), and left-non-coronary cusp fusion (LN)] are associated with different dilation patterns, suggesting a role for hemodynamics in BAV aortopathogenesis. However, assessment of this theory is still hampered by the limited knowledge of the hemodynamic abnormalities generated by the distinct BAV morphotypes. The objective of this study was to compare experimentally the hemodynamics of a normal (i.e., non-dilated) ascending aorta (AA) subjected to tricuspid aortic valve (TAV), LR-BAV, RN-BAV, and NL-BAV flow. Tissue BAVs reconstructed from porcine TAVs were subjected to physiologic pulsatile flow conditions in a left-heart simulator featuring a realistic aortic root and compliant aorta. Phase-locked particle image velocimetry experiments were carried out to characterize the flow in the aortic root and in the tubular AA in terms of jet skewness and displacement, as well as mean velocity, viscous shear stress and Reynolds shear stress fields. While all three BAVs generated skewed and asymmetrical orifice jets (up to 1.7- and 4.0-fold increase in flow angle and displacement, respectively, relative to the TAV at the sinotubular junction), the RN-BAV jet was out of the plane of observation. The LR- and NL-BAV exhibited a 71% increase in peak-systolic orifice jet velocity relative to the TAV, suggesting an inherent degree of stenosis in BAVs. While these two BAV morphotypes subjected the convexity of the aortic wall to viscous shear stress overloads (1.7-fold increase in maximum peak-systolic viscous shear stress relative to the TAV-AA), the affected sites were morphotype-dependent (LR-BAV: proximal AA, NL-BAV: distal AA). Lastly, the LR- and NL-BAV generated high degrees of turbulence in the AA (up to 2.3-fold increase in peak-systolic Reynolds shear stress relative to the TAV) that were sustained from peak systole throughout the deceleration phase. This in vitro study reveals substantial flow abnormalities (increased jet skewness, asymmetry, jet velocity, turbulence, and shear stress overloads) in non-dilated BAV aortas, which differ from those observed in dilated aortas but still coincide with aortic wall regions prone to dilation.
Henoch–Schönlein purpura (HSP) is a systemic small-vessel leucocytoclastic vasculitis with deposition of immune complexes containing Immunoglobulin A (IgA). IgA Nephropathy (IgAN) is a glomerulonephritis caused by mesangial deposition of IgA. The onset of HSP, but not IgAN, has been linked to influenza vaccination.We report the first case of HSP with glomerular involvement, in a renal transplant recipient following influenza vaccination. The patient had prior end-stage renal failure (ESRF) secondary to IgAN, without clinical evidence of IgAN recurrence after transplantation. This is of clinical relevance as influenza vaccination is regarded safe, effective, and recommended after renal transplantation.Nephrologists should be aware of the potential for influenza vaccination to have adverse effects in renal transplant recipients, especially if the primary renal disease is HSP or IgAN.
The low wall shear stress region generated downstream of the anastomosis under low and moderate arteriovenous graft flow rates was eliminated under the highest arteriovenous graft flow rate. Increase in arteriovenous graft flow rate from 800 to 1500 mL/min resulted in a substantial increase in wall shear stress magnitude (27-fold increase in temporal shear magnitude), the elimination of wall shear stress bidirectionality (0.20-point reduction in oscillatory shear index), and a reduction in flow stagnation (98% decrease in relative residence time). While the results suggest the ability of high arteriovenous graft flow rates to protect the venous wall from intimal hyperplasia-prone hemodynamics, they indicate their adverse impact on the degree of venous hemodynamic abnormality.
This study suggests the ability of the MAVD to normalize venous flow between dialysis periods while generating the typical hemodynamics of end-to-side vein-graft anastomoses during dialysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.