We present kinematic analyses of the 12 galaxies in the "Survey of H I in Extremely Low-mass Dwarfs" (SHIELD). We use multi-configuration interferometric observations of the H I 21 cm emission line from the Karl G. Jansky Very Large Array (VLA) 22 to produce image cubes at a variety of spatial and spectral resolutions. Both two-and three-dimensional fitting techniques are employed in an attempt to derive inclination-corrected rotation curves for each galaxy. In most cases, the comparable magnitudes of velocity dispersion and projected rotation result in degeneracies that prohibit unambiguous circular velocity solutions. We thus make spatially resolved position-velocity cuts, corrected for inclination using the stellar components, to estimate the circular rotation velocities. We find v circ 30 km s −1 for the entire survey population. Baryonic masses are calculated using singledish H I fluxes from Arecibo and stellar masses derived from HST and Spitzer imaging. Comparison is made with total dynamical masses estimated from the position-velocity analysis. The SHIELD galaxies are then placed on the baryonic Tully-Fisher relation. There exists an empirical threshold rotational velocity, Vrot < 15 km s −1 , below which current observations cannot differentiate coherent rotation from pressure support. The SHIELD galaxies are representative of an important population of galaxies whose properties cannot be described by current models of rotationally dominated galaxy dynamics.
CASA, the Common Astronomy Software Applications, is the primary data processing software for the Atacama Large Millimeter/submillimeter Array (ALMA) and the Karl G. Jansky Very Large Array (VLA), and is frequently used also for other radio telescopes. The CASA software can handle data from single-dish, aperture-synthesis, and Very Long Baseline Interferometery (VLBI) telescopes. One of its core functionalities is to support the calibration and imaging pipelines for ALMA, VLA, VLA Sky Survey, and the Nobeyama 45 m telescope. This paper presents a high-level overview of the basic structure of the CASA software, as well as procedures for calibrating and imaging astronomical radio data in CASA. CASA is being developed by an international consortium of scientists and software engineers based at the National Radio Astronomy Observatory (NRAO), the European Southern Observatory, the National Astronomical Observatory of Japan, and the Joint Institute for VLBI European Research Infrastructure Consortium (JIV-ERIC), under the guidance of NRAO.
We analyze the relationships between atomic, neutral hydrogen (H I) and star formation (SF) in the 12 low-mass SHIELD galaxies. We compare high spectral (∼0.82 km s −1 ch −1 ) and spatial resolution (physical resolutions of 170 pc -700 pc) H I imaging from the VLA with Hα and far-ultraviolet imaging. We quantify the degree of co-spatiality between star forming regions and regions of high H I column densities. We calculate the global star formation efficiencies (SFE, Σ SFR / Σ H I ), and examine the relationships among the SFE and H I mass, H I column density, and star formation rate (SFR). The systems are consuming their cold neutral gas on timescales of order a few Gyr. While we derive an index for the Kennicutt-Schmidt relation of N ≈ 0.68±0.04 for the SHIELD sample as a whole, the values of N vary considerably from system to system. By supplementing SHIELD results with those from other surveys, we find that HI mass and UV-based SFR are strongly correlated over five orders of magnitude. Identification of patterns within the SHIELD sample allows us to bin the galaxies into three general categories: 1) mainly co-spatial H I and SF regions, found in systems with highest peak H I column densities and highest total H I masses; 2) moderately correlated H I and SF regions, found in systems with moderate H I column densities; and 3) obvious offsets between H I and SF peaks, found in systems with the lowest total H I masses. SF in these galaxies is dominated by stochasticity and random fluctuations in their ISM.
We present new H I spectral line images of the nearby low-mass galaxy NGC 5238, acquired with the Karl G. Jansky Very Large Array (VLA a ). Located at a distance of 4.51 ± 0.04 Mpc, NGC 5238 is an actively star-forming galaxy with widespread Hα and UV continuum emission. The source is included in many ongoing and recent nearby galaxy surveys, but until this work the spatially resolved qualities of its neutral interstellar medium have remained unstudied. Our H I images resolve the disk on physical scales of ∼400 pc, allowing us to undertake a detailed comparative study of the gaseous and stellar components. The H I disk is asymmetric in the outer regions, and the areas of high H I mass surface density display a crescent-shaped morphology that is slightly offset from the center of the stellar populations. The H I column density exceeds 10 21 cm −2 in much of the disk. We quantify the degree of co-spatiality of dense H I gas and sites of ongoing star formation as traced by far-UV and Hα emission. The neutral gas kinematics are complex; using a spatially-resolved positionvelocity analysis, we infer a rotational velocity of 31 ± 5 km s −1 . We place NGC 5238 on the baryonic Tully-Fisher relation and contextualize the system amongst other low-mass galaxies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.