The tauopathies are a group of disorders characterised by aggregation of the microtubuleassociated protein tau and include Alzheimer's disease (AD) and the fronto-temporal dementias (FTD). We have used Drosophila to analyse how tau abnormalities cause neurodegeneration. By selectively co-expressing wild-type human tau (0N3R isoform) and a GFP vesicle marker in motorneurons, we examined the consequences of tau overexpression on axonal transport in vivo. The results show that overexpression of tau disrupts axonal transport causing vesicle aggregation and this is associated with loss of locomotor function. All these effects occur without neuron death. Co-expression of constitutively active glycogensynthase kinase-3b (GSK-3b) enhances and two GSK-3b inhibitors, lithium and AR-A014418, reverse both the axon transport and locomotor phenotypes, suggesting that the pathological effects of tau are phosphorylation dependent. These data show that tau abnormalities significantly disrupt neuronal function, in a phosphorylation-dependent manner, before the classical pathological hallmarks are evident and also suggest that the inhibition of GSK-3b might have potential therapeutic benefits in tauopathies. Keywords: Alzheimer's disease; axonal transport; Drosophila; GSK-3b; lithium; tau Tauopathies are a group of neurodegenerative diseases, including Alzheimer's disease (AD) and the fronto-temporal dementias (FTD), characterised by aggregation of the microtubule-associated protein, tau, into neurofibrillary tangles (NFTs). The finding that mutations in the tau gene give rise to familial FTD 1 proved that abnormalities in tau are sufficient to cause neurodegeneration. However, the cellular mechanisms by which tau abnormalities disrupt neuronal function and lead to neurodegeneration have not been elucidated. Furthermore, in the tauopathies at least three tau protein abnormalities are observed: hyperphosphorylation, altered expression and filament formation; and it is not clear which of these plays a primary role in the disease process and which is a secondary consequence.We have previously demonstrated that overexpression of tau causes neurodegeneration in Drosophila without forming filamentous aggregates.2 Others have subsequently confirmed and extended these findings by illustrating that overexpression of FTDP-17 mutant tau also induces neurodegeneration in Drosophila without the formation of neurofibrillary aggregates. 3More recently it has been shown that hyperphosphorylation of overexpressed tau not only exacerbates the neurodegeneration seen with tau alone but also stimulates filament formation leading to NFT formation in Drosophila.4 These findings collectively demonstrate that although hyperphosphorylation, and possibly filament formation, can exacerbate taumediated neurodegeneration, overexpression of wildtype (wt) tau alone is sufficient to cause neurodegeneration. The molecular events underlying this have not been elucidated.There are many ways by which tau overexpression could disrupt neuronal homeostasis and cause neu...
During early mammalian development, blastocyst morphogenesis is achieved by epithelial differentiation of trophectoderm (TE) and its segregation from the inner cell mass (ICM). Two major interrelated features of TE differentiation required for blastocoel formation include intercellular junction biogenesis and a directed ion transport system, mediated by Na+/K+ ATPase. We have examined the relative contribution of intercellular signalling mediated by protein kinase C (PKC) and gap junctional communication in TE differentiation and blastocyst cavitation. The distribution pattern of four (delta, theta, iota/lambda, zeta) PKC isoforms and PKCmicro/PKD1 showed partial colocalisation with the tight junction marker ZO-1alpha+ in TE and all four PKCs (delta, theta, iota/lambda, zeta) showed distinct TE/ICM staining patterns (predominantly at the cell membrane within the TE and cytoplasmic within the ICM), indicating their potential contribution to TE differentiation and blastocyst morphogenesis. Specific inhibition of PKCdelta and zeta activity significantly delayed blastocyst formation. Although modulation of these PKC isoforms failed to influence the already established programme of epithelial junctional differentiation within the TE, Na+/K+ ATPase alpha1 subunit was internalised from membrane to cytoplasm. Inhibition of gap junctional communication, in contrast, had no influence on any of these processes. Our results demonstrate for the first time that distinct PKC isotypes contribute to the regulation of cavitation in preimplantation embryos via target proteins including Na+/K+ ATPase.
In mouse early development, cell contact patterns regulate the spatial organization and segregation of inner cell mass (ICM) and trophectoderm epithelium (TE) during blastocyst morphogenesis. Progressive membrane assembly of tight junctional (TJ) proteins in the differentiating TE during cleavage is upregulated by cell contact asymmetry (outside position) and suppressed within the ICM by cell contact symmetry (inside position). This is reversible, and immunosurgical isolation of the ICM induces upregulation of TJ assembly in a sequence that broadly mimics that occurring during blastocyst formation. The mechanism relating cell contact pattern and TJ assembly was investigated in the ICM model with respect to PKC-mediated signaling and gap junctional communication. Our results indicate that complete cell contact asymmetry is required for TJ biogenesis and acts upstream of PKC-mediated signaling. Specific inhibition of two PKC isoforms, PKCdelta and zeta, revealed that both PKC activities are required for membrane assembly of ZO-2 TJ protein, while only PKCzeta activity is involved in regulating ZO-1alpha+ membrane assembly, suggesting different mechanisms for individual TJ proteins. Gap junctional communication had no apparent influence on either TJ formation or PKC signaling but was itself affected by changes of cell contact patterns. Our data suggest that the dynamics of cell contact patterns coordinate the spatial organization of TJ formation via specific PKC signaling pathways during blastocyst biogenesis.
Epithelial differentiation including tight junction (TJ) formation occurs exclusively within the trophectoderm (TE) lineage of the mouse blastocyst. Here we examine mechanisms by which TJ protein membrane assembly might be regulated by protein kinase C (PKC) in the embryo. To overcome the inherent staging asynchrony of individual blastomeres within intact embryos, we have used isolated inner cell masses (ICMs) from early blastocysts to induce epithelial differentiation in their outer cells responding to their new cell contact pattern. Two TJ proteins examined retain their order of membrane assembly in isolated ICMs in culture as during normal development (early-assembling ZO-2 and late-assembling ZO-1a 1 ), but this process is highly accelerated. Using six chemical modulators of PKC activity, we show here that PKC signalling is involved in the regulation of TJ membrane assembly. While indolactam-mediated PKC activation stimulates membrane assembly of both TJ proteins, TPAmediated PKC activation stimulates only that of ZO-1a 1 . The PKC inhibitors Ro-31-8220, Ro-31-8425 and Gö 6983 suppress the stimulatory effect of both PKC activators on membrane assembly to varying extents according to inhibitor and TJ protein examined. Gö 6983 similarly inhibits ZO-2 and ZO-1a 1 membrane assembly. PKC inhibition by Gö 6976 appeared to stimulate TJ membrane assembly. Despite the broad PKC isotype specificity of the inhibitors used, these data suggest that the two TJ proteins are differently regulated by PKC isotypes or subfamilies. As Gö 6983 uniquely affects aPKC (particularly PKCz) and we find that both PKCd and z relocate upon activator treatment to co-localise partially with the TJ proteins in isolated ICMs, we suggest that at least PKCd and z may play a central role in regulating TJ membrane assembly.
During early development, the eutherian mammalian embryo forms a blastocyst comprising an outer trophectoderm epithelium and enclosed inner cell mass (ICM). The short-term goal of blastocyst morphogenesis, including epithelial differentiation and segregation of the ICM, is mainly regulated autonomously and comprises a combination of temporally controlled gene expression, cell polarisation, differentiative cell divisions and cell-cell interactions. This aspect of blastocyst biogenesis is reviewed, focusing, in particular, on the maturation and role of cell adhesion systems. Early embryos are also sensitive to their environment, which can affect their developmental potential in diverse ways and may lead to long-term consequences relating to fetal or postnatal growth and physiology. Some current concepts of embryo-environment interactions, which may impact on future health, are also reviewed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.