Abstract. A broad molecular systematic survey of Noctuidae was undertaken to test recent hypotheses on the problematic definitions and relationships of the subfamilies, with special emphasis on the ‘trifines.’ An initial hypothesis of noctuid classification to the subtribal level was synthesized from recent reviews, and then sampled as broadly as possible. Concatenated sequences for the nuclear genes elongation factor‐1α (EF‐1α; 1200 bp) and dopa decarboxylase (DDC; 700–1100 bp) were analysed for a total of 146 exemplar species, twice that of a previous study. Trees were estimated using likelihood, distance, and both equally weighted and ‘six‐parameter’ parsimony. Of the 144 possible nodes, bootstrap support (BP) was ≥ 50% for ∼80, and ≥ 80% for ∼60. There was very strong support (BP ≥ 90%) for an ‘L.A.Q.’ clade encompassing nearly all quadrifine noctuids plus Arctiidae and Lymantriidae, decisively rendering Noctuidae paraphyletic. We present a new classification for Noctuoidea in which Noctuidae sensu stricto is restricted to trifines; most quadrifine subfamilies are raised to full families. Within the ‘L.A.Q.’ clade, Aganainae and Herminiinae were strongly grouped, but other relationships were weakly supported, probably due to limited taxon sampling. Nolidae and Euteliinae + Stictopterinae are generally grouped with the ‘L.A.Q.’ clade, but with weak support. All analyses favour the broadest definitions proposed for the trifine clade (our Noctuidae sensu stricto) although support is not strong, except that the exemplar of Eustrotiinae: Eublemmini is placed securely in the ‘L.A.Q.’ clade. Numerous recent proposals for dismantling and recombining the ‘Hampsonian’ traditional trifine subfamilies are strongly supported, most notably a broadly defined ‘true cutworm’ clade (Noctuinae s.l.), encompassing the greater part of the traditional subfamilies Amphipyrinae, Cuculliinae, Hadeninae and Noctuinae s.s. (BP ≥ 95%). Within this clade there is strong support for Apameini s.s.+ Xylenini s.l. and for Noctuinae s.s. and divisions thereof, but little support for monophyly or subdivision of Hadeninae. Noctuinae s.l. invariably are allied with Heliothinae, scattered remnants of the traditional Amphipyrinae, and several smaller groups in a broader ‘pest clade’, albeit with weak support. Relationships among the remaining ‘lower’ trifines are not strongly resolved. Mapping of a preliminary synopsis of species diversities, host use patterns and latitudinal distributions on the phylogeny suggests that the diversification of trifines may have been promoted, to a degree unique among Macrolepidoptera, by the Tertiary expansion of seasonal, open habitats and their associated herbaceous floras.
Abstract. The Heliothinae are a cosmopolitan subfamily of about 365 species that include some of the world's most injurious crop pests. This study re-assesses evolutionary relationships within heliothines, providing an improved phylogeny and classification to support ongoing intensive research on heliothine genomics, systematics, and biology. Our phylogeny estimate is based on two nuclear gene regions, namely elongation factor-1a (EF-1a; 1240 bp) and dopa decarboxylase (DDC; 687 bp), and on the barcoding region of mitochondrial cytochrome oxidase I (COI; 708 bp), providing a total of 2635 bp. These were sequenced for 71 heliothines, representing all major genera and nearly all recognized subgenera and species groups, and for 16 outgroups representing all major lineages of trifine Noctuidae. Analysis of the combined data by maximum likelihood, unweighted parsimony and Bayesian methods gave nearly identical topologies, and the individual gene trees showed only one case of potentially strong conflict. Relationships among genera and subgenera are resolved with strong bootstrap support. The earliest-diverging lineages (c. 200 species in total) consist almost entirely of host specialists, reflecting the inferred ancestral heliothine host range under parsimony. The remaining species form a clade -the Heliothis group -that includes most of the polyphages (30% of heliothines) and all of the major pests. Many other species in the Heliothis group, however, are host specialists. Our results extend previous efforts to subdivide this large clade, and show the most notorious pest groups, the corn earworm complex (Helicoverpa) and the tobacco budworm (Heliothis virescens) group, to be closely related, joining with a small oligophagous genus in what we term the major-pest lineage. Thus, genomic/ experimental results from one model pest may extrapolate well to other pest species. The frequency of evolutionary expansion and contraction in host range appears to increase dramatically at the base of the Heliothis group, in contrast to the case for earlier-diverging lineages. We ascribe this difference provisionally to differential evolutionary constraints arising from contrasting life-history syndromes. Host-specific behaviour and crypsis, coupled with low fecundity and vagility, may discourage host-range expansion in earlier-diverging lineages. By Systematic EntemologySystematic Entomology contrast, in the Heliothis group, the absence of host-specific traits, coupled with high vagility and fecundity, may more readily permit expansion or contraction of the host range in response to varying ecological pressures such as host species abundance or differential competition and predation.
To test its phylogenetic utility, nucleotide sequence variation in a 1,240-bp fragment of the elongation factor-1 alpha (EF-1 alpha) gene was examined in 49 moth species representing the major groups of the superfamily Noctuoidea. Both parsimony and distance analyses supported the monophyly of nearly all groups for which there are clear morphological synapomorphies. Clades of subfamily rank and lower, probably mid-Tertiary and younger, were strongly supported. The third codon position contains 88% of variable sites, and approaches saturation at approximately 20% sequence divergence, possibly due to among-site rate heterogeneity and composition bias; higher divergences occur only in association with shifts in composition. Surprisingly, the few nonsynonymous changes appear no more phylogenetically reliable than synonymous changes. Signal strength for basal divergences is weak and fails to improve with character weighting; thus, dense taxon sampling is probably needed for strong inference from EF-1 alpha regarding deeper splits in Noctuoidea (probably early Tertiary). EF-1 alpha synonymous changes show promise for phylogeny reconstruction within Noctuidae and other groups of Tertiary age.
A central question concerning data collection strategy for molecular phylogenies has been, is it better to increase the number of characters or the number of taxa sampled to improve the robustness of a phylogeny estimate? A recent simulation study concluded that increasing the number of taxa sampled is preferable to increasing the number of nucleotide characters, if taxa are chosen specifically to break up long branches. We explore this hypothesis by using empirical data from noctuoid moths, one of the largest superfamilies of insects. Separate studies of two nuclear genes, elongation factor-1 alpha (EF-1 alpha) and dopa decarboxylase (DDC), have yielded similar gene trees and high concordance with morphological groupings for 49 exemplar species. However, support levels were quite low for nodes deeper than the subfamily level. We tested the effects on phylogenetic signal of (1) increasing the taxon sampling by nearly 60%, to 77 species, and (2) combining data from the two genes in a single analysis. Surprisingly, the increased taxon sampling, although designed to break up long branches, generated greater disagreement between the two gene data sets and decreased support levels for deeper nodes. We appear to have inadvertently introduced new long branches, and breaking these up may require a yet larger taxon sample. Sampling additional characters (combining data) greatly increased the phylogenetic signal. To contrast the potential effect of combining data from independent genes with collection of the same total number of characters from a single gene, we simulated the latter by bootstrap augmentation of the single-gene data sets. Support levels for combined data were at least as high as those for the bootstrap-augmented data set for DDC and were much higher than those for the augmented EF-1 alpha data set. This supports the view that in obtaining additional sequence data to solve a refractory systematic problem, it is prudent to take them from an independent gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.