Changes in psychological state have been proposed as a cause of variation in brain-computer interface performance, but little formal analysis has been conducted to support this hypothesis. In this study, we investigated the effects of three mental states—fatigue, frustration, and attention—on BCI performance. Twelve able-bodied participants were trained to use a two-class EEG-BCI based on the performance of user-specific mental tasks. Following training, participants completed three testing sessions, during which they used the BCI to play a simple maze navigation game while periodically reporting their perceived levels of fatigue, frustration, and attention. Statistical analysis indicated that there is a significant relationship between frustration and BCI performance while the relationship between fatigue and BCI performance approached significance. BCI performance was 7% lower than average when self-reported fatigue was low and 7% higher than average when self-reported frustration was moderate. A multivariate analysis of mental state revealed the presence of contiguous regions in mental state space where BCI performance was more accurate than average, suggesting the importance of moderate fatigue for achieving effortless focus on BCI control, frustration as a potential motivating factor, and attention as a compensatory mechanism to increasing frustration. Finally, a visual analysis showed the sensitivity of underlying class distributions to changes in mental state. Collectively, these results indicate that mental state is closely related to BCI performance, encouraging future development of psychologically adaptive BCIs.
Traditional brain-computer interfaces often exhibit unstable performance over time. It has recently been proposed that passive brain-computer interfaces may provide a way to complement and stabilize these traditional systems. In this study, we investigated the feasibility of a passive brain-computer interface that uses electroencephalography to monitor changes in mental state on a single-trial basis. We recorded cortical activity from 15 locations while 11 able-bodied adults completed a series of challenging mental tasks. Using a feature clustering algorithm to account for redundancy in EEG signal features, we classified self-reported changes in fatigue, frustration, and attention levels with 74.8 ± 9.1%, 71.6 ± 5.6%, and 84.8 ± 7.4% accuracy, respectively. Based on the most frequently-selected features across all participants, we note the importance of the frontal and central electrodes for fatigue detection, posterior alpha band and frontal beta band activity for frustration detection, and posterior alpha band activity for attention detection. Future work will focus on integrating these results with an active brain-computer interface.
In this study, we investigate the feasibility of a BCI based on transcranial Doppler ultrasound (TCD), a medical imaging technique used to monitor cerebral blood flow velocity. We classified the cerebral blood flow velocity changes associated with two mental tasks - a word generation task, and a mental rotation task. Cerebral blood flow velocity was measured simultaneously within the left and right middle cerebral arteries while nine able-bodied adults alternated between mental activity (i.e. word generation or mental rotation) and relaxation. Using linear discriminant analysis and a set of time-domain features, word generation and mental rotation were classified with respective average accuracies of 82.9%10.5 and 85.7%10.0 across all participants. Accuracies for all participants significantly exceeded chance. These results indicate that TCD is a promising measurement modality for BCI research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.