Arsenic is often assumed to be immobile in sulfidic environments. Here, laboratory-scale microcosms were conducted to investigate whether microbial sulfate reduction could control dissolved arsenic concentrations sufficiently for use in groundwater remediation. Sediments from the Vineland Superfund site and the Coeur d'Alene mining district were amended with different combination of lactate and sulfate and incubated for 30 to 40 days. In general, sulfate reduction in Vineland sediments resulted in transient and incomplete arsenic removal, or arsenic release from sediments. Sulfate reduction in the Coeur d'Alene sediments was more effective at removing arsenic from solution than the Vineland sediments, probably by arsenic substitution and adsorption within iron sulfides. X-ray absorption spectroscopy indicated that the Vineland sediments initially contained abundant reactive ferrihydrite, and underwent extensive sulfur cycling during incubation. As a result, arsenic in the Vineland sediments could not be effectively converted to immobile arsenic-bearing sulfides, but instead a part of the arsenic was probably converted to soluble thioarsenates. These results suggest that coupling between the iron and sulfur redox cycles must be fully understood for in situ arsenic immobilization by sulfate reduction to be successful.
This study focused on the effects of particle size (40, 8.6, and 3.6 nm) and the presence of the microbial ligand desferrioxamine B (DFOB) on Pb(II) sorption to hematite, based on sorption edge experiments (i.e., sorption as a function of pH). Effects of hematite nanoparticle size on sorption edges, when plotted either as sorption density or as % Pb uptake, depended on whether the experiments were normalized to account for differences in specific surface area within the reaction vessels or postnormalized after the fact. Accounting for specific surface area within reaction vessels is needed to maintain comparable ratios of sorbate to sorbent surface sites. When normalized for BET specific surface area (A(s,BET)) within the reaction vessels, the Pb(II) sorption edge shifted ∼0.5 pH units to the left for <10 nm hematite particles, but maximum sorption density (at pH ≥ 6) was unaffected by particle size. DFOB had little or no effect on Pb(II) sorption to <10 nm particles, but DFOB decreased Pb(II) sorption to the 40 nm particles at pH ≥ 6 by ∼20%. Hematite (nano)particle size thus exerts subtle effects on Pb(II) sorption, but the effects may be more pronounced in the presence of a metal complexing agent.
We tested the hypothesis that runoff of uranium-bearing particles from mining waste disposal areas was a significant mechanism for redistribution of uranium in the northeastern part of the Upper Puerco River watershed (New Mexico). However, our results were not consistent with this hypothesis. Analysis of > 100 sediment and suspended sediment samples collected adjacent to and downstream from uranium source areas indicated that uranium levels in the majority of the samples were not elevated above background. Samples collected within 50 m of a known waste disposal site were subjected to detailed geochemical characterization. Uranium in these samples was found to be highly soluble; treatment with synthetic pore water for 24 h caused dissolution of 10--50% of total uranium in the samples. Equilibrium uranium concentrations in pore water were > 4.0 mg/L and were sustained in repeated wetting events, effectively depleting soluble uranium from the solid phase. The dissolution rate of uranium appeared to be controlled by solid-phase diffusion of uranium from within uranium-bearing mineral particles. X-ray adsorption spectroscopy indicated the presence of a soluble uranyl silicate, and possibly a uranyl phosphate. These phases were exhausted in transported sediment suggesting that uranium was readily mobilized from sediments in the Upper Puerco watershed and transported in the dissolved load. These results could have significance for uranium risk assessment as well as mining waste management and cleanup efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.