Physically based deformable models have been widely embraced by the Computer Graphics community. Many problems outlined in a previous survey by Gibson and Mirtich have been addressed, thereby making these models interesting and useful for both offline and real-time applications, such as motion pictures and video games. In this paper, we present the most significant contributions of the past decade, which produce such impressive and perceivably realistic animations and simulations: finite element/difference/volume methods, mass-spring systems, mesh-free methods, coupled particle systems and reduced deformable models-based on modal analysis. For completeness, we also make a connection to the simulation of other continua, such as fluids, gases and melting objects. Since time integration is inherent to all simulated phenomena, the general notion of time discretization is treated separately, while specifics are left to the respective models. Finally, we discuss areas of application, such as elastoplastic deformation and fracture, cloth and hair animation, virtual surgery simulation, interactive entertainment and fluid/smoke animation, and also suggest areas for future research.
We present a method for modeling and animating a wide spectrum of volumetric objects, with material properties anywhere in the range from stiff elastic to highly plastic. Both the volume and the surface representation are point based, which allows arbitrarily large deviations form the original shape. In contrast to previous point based elasticity in computer graphics, our physical model is derived from continuum mechanics, which allows the specification of common material properties such as Young's Modulus and Poisson's Ratio. In each step, we compute the spatial derivatives of the discrete displacement field using a Moving Least Squares (MLS) procedure. From these derivatives we obtain strains, stresses and elastic forces at each simulated point. We demonstrate how to solve the equations of motion based on these forces, with both explicit and implicit integration schemes. In addition, we propose techniques for modeling and animating a point-sampled surface that dynamically adapts to deformations of the underlying volumetric model
The question of what are good views of a 3D object has been addressed by numerous researchers in perception, computer vision, and computer graphics. This has led to a large variety of measures for the goodness of views as well as some special-case viewpoint selection algorithms. In this article, we leverage the results of a large user study to optimize the parameters of a general model for viewpoint goodness, such that the fitted model can predict people's preferred views for a broad range of objects. Our model is represented as a combination of attributes known to be important for view selection, such as projected model area and silhouette length. Moreover, this framework can easily incorporate new attributes in the future, based on the data from our existing study. We demonstrate our combined goodness measure in a number of applications, such as automatically selecting a good set of representative views, optimizing camera orbits to pass through good views and avoid bad views, and trackball controls that gently guide the viewer towards better views.
We introduce a framework for triangle shape optimization and feature preserving smoothing of triangular meshes that is guided by the vertex Laplacians, specifically, the uniformly weighted Laplacian and the discrete mean curvature normal. Vertices are relocated so that they approximate prescribed Laplacians and positions in a weighted least-squares sense; the resulting linear system leads to an efficient, non-iterative solution. We provide different weighting schemes and demonstrate the effectiveness of the framework on a number of detailed and highly irregular meshes; our technique successfully improves the quality of the triangulation while remaining faithful to the original surface geometry, and it is also capable of smoothing the surface while preserving geometric features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.