We consider a Markovian regime switching insurance risk model (also called Markov-modulated risk model). The closed form solutions for the joint distribution of surplus before and after ruin when the initial surplus is zero or when the claim size distributions are phase-type distributed are obtained.
An optimal investment problem is solved for an insider who has access to noisy information related to a future stock price, but who does not know the stock price drift. The drift is filtered from a combination of price observations and the privileged information, fusing a partial information scenario with enlargement of filtration techniques. We apply a variant of the Kalman-Bucy filter to infer a signal, given a combination of an observation process and some additional information. This converts the combined partial and inside information model to a full information model, and the associated investment problem for HARA utility is explicitly solved via duality methods. We consider the cases in which the agent has information on the terminal value of the Brownian motion driving the stock, and on the terminal stock price itself. Comparisons are drawn with the classical partial information case without insider knowledge. The parameter uncertainty results in stock price inside information being more valuable than Brownian information, and perfect knowledge of the future stock price leads to infinite additional utility. This is in contrast to the conventional case in which the stock drift is assumed known, in which perfect information of any kind leads to unbounded additional utility, since stock price information is then indistinguishable from Brownian information.
In this paper, we consider the dual of the classical Cramér-Lundberg model when gains follow a phase-type distribution. By using the property of phase-type distribution, two pairs of upcrossing and downcrossing barrier probabilities are derived. Explicit formulas for the expected total discounted dividends until ruin and the Laplace transform of the time of ruin under a variety of dividend strategies can then be obtained without the use of Laplace transforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.