Abstract. We devise an algorithm, e L 1 , with the following specifications: It takes as input an arbitrary basis B = (bi)i ∈ Z d×d of a Euclidean lattice L; It computes a basis of L which is reduced for a mild modification of the Lenstra-Lenstra-Lovász reduction; It terminates in timewhere β = log max bi (for any ε > 0 and ω is a valid exponent for matrix multiplication). This is the first LLL-reducing algorithm with a time complexity that is quasi-linear in β and polynomial in d. The backbone structure of e L 1 is able to mimic the Knuth-Schönhage fast gcd algorithm thanks to a combination of cutting-edge ingredients. First the bit-size of our lattice bases can be decreased via truncations whose validity are backed by recent numerical stability results on the QR matrix factorization. Also we establish a new framework for analyzing unimodular transformation matrices which reduce shifts of reduced bases, this includes bit-size control and new perturbation tools. We illustrate the power of this framework by generating a family of reduction algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.