Abstract. Population based decision mechanisms employed by many Swarm Intelligence methods can suffer poor convergence resulting in ill-defined halting criteria and loss of the best solution. Conversely, as a result of its resource allocation mechanism, the solutions found by Stochastic Diffusion Search enjoy excellent stability. Previous implementations of SDS have deployed complex stopping criteria derived from global properties of the agent population; this paper examines two new local SDS halting criteria and compares their performance with 'quorum sensing' -a natural termination criterion deployed in nature by some species of tandem-running ants. We empirically demonstrate that local termination criteria are almost as robust as the classical SDS termination criteria, whilst the average time taken to reach a decision is around three times faster.
Studies in Applied Philosophy, Epistemology and Rational Ethics (SAPERE) publishes new developments and advances in all the fields of philosophy, epistemology, and ethics, bringing them together with a cluster of scientific disciplines and technological outcomes: from computer science to life sciences, from economics, law, and education to engineering, logic, and mathematics, from medicine to physics, human sciences, and politics. It aims at covering all the challenging philosophical and ethical themes of contemporary society, making them appropriately applicable to contemporary theoretical, methodological, and practical problems, impasses, controversies, and conflicts. The series includes monographs, lecture notes, selected contributions from specialized conferences and workshops as well as selected PhD theses.
Advisory BoardA.
Stochastic diffusion search (SDS) is a global Swarm Intelligence optimisation technique based on the behaviour of ants, rooted in the partial evaluation of an objective function and direct communication between agents. Although population based decision mechanisms employed by many Swarm Intelligence methods can suffer poor convergence resulting in ill-defined halting criteria and loss of the best solution, as a result of its resource allocation mechanism, the solutions found by Stochastic Diffusion Search enjoy excellent stability. Previous implementations of SDS have deployed stopping criteria derived from global properties of the agent population; this paper examines new local SDS halting criteria and compares their performance with 'quorum sensing' (a termination criterion naturally deployed by some species of tandem-running ants). In this paper we discuss two experiments investigating the robustness and efficiency of the new local termination criteria; our results demonstrate these to be (a) effectively as robust as the classical SDS termination criteria and (b) almost three times faster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.