Secondary aquatic adaptations independently evolved more than thirty times from terrestrial vertebrate ancestors 1,2 . For decades, non-avian dinosaurs were believed to be an exception to this pattern. Only a few species have been hypothesized as partly or predominantly aquatic 3,4,5,6,7,8,9,10,11 . However, these hypotheses remain controversial 12,13 largely due to the difficulty of identifying unambiguous anatomical adaptations for aquatic habits in extinct animals. In this study, we demonstrate that the relationship between bone density and aquatic ecologies across extant amniotes provides a reliable inference of aquatic habits in extinct species.We use this approach to evaluate the distribution of aquatic adaptations among non-avian dinosaurs. We find strong support for aquatic habits in spinosaurids, associated with a remarkable increase in bone density, which precedes the evolution of more conspicuous anatomical modifications, a pattern also observed in other aquatic reptiles and mammals 14,15,16 .Spinosaurids are revealed to be aquatic specialists with surprising ecological disparity, including subaqueous foraging behavior in Spinosaurus and Baryonyx, and non-diving habits in Suchomimus.
Increasing contributions of prymnesiophytes such as Phaeocystis pouchetii and Emiliania huxleyi to Barents Sea (BS) phytoplankton production have been suggested based on in situ observations of phytoplankton community composition, but the scattered and discontinuous nature of these records confounds simple inference of community change or its relationship to salient environmental variables. However, provided that meaningful assessments of phytoplankton community composition can be inferred based on their optical characteristics, ocean-colour records offer a potential means to develop a synthesis between sporadic in situ observations. Existing remote-sensing algorithms to retrieve phytoplankton functional types based on chlorophyll-a ( chl-a ) concentration or indices of pigment packaging may, however, fail to distinguish Phaeocystis from other blooms of phytoplankton with high pigment packaging, such as diatoms. We develop a novel algorithm to distinguish major phytoplankton functional types in the BS and apply it to the MODIS-Aqua ocean-colour record, to study changes in the composition of BS phytoplankton blooms in July, between 2002 and 2018, creating time series of the spatial distribution and intensity of coccolithophore, diatom and Phaeocystis blooms. We confirm a north-eastward expansion in coccolithophore bloom distribution, identified in previous studies, and suggest an inferred increase in chl-a concentrations, reported by previous researchers, may be partly explained by increasing frequencies of Phaeocystis blooms. This article is part of the theme issue ‘The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning’.
Myhrvold et al. suggest that our inference of subaqueous foraging among spinosaurids is undermined by selective bone sampling, inadequate statistical procedures, and use of inaccurate ecological categorizations. Myhrvold et al. ignore major details of our analyses and results, and instead choose to portray our inferences as if they were based on qualitative interpretations of our plots, without providing additional analyses to support their claims. In this manuscript, we thoroughly discuss all the concerns exposed by Myhrvold et al.. Additional analyses based on our original datasets and novel data presented by Myhrvold et al. do not change our original interpretations: while the spinosaurid dinosaurs Spinosaurus and Baryonyx are recovered as subaqueous foragers, Suchomimus is inferred as a non-diving animal.
A bio-optical model for the Barents Sea is determined from a set of in situ observations of inherent optical properties (IOPs) and associated biogeochemical analyses. The bio-optical model provides a pathway to convert commonly measured parameters from glider-borne sensors (CTD, optical triplet sensor—chlorophyll and CDOM fluorescence, backscattering coefficients) to bulk spectral IOPs (absorption, attenuation and backscattering). IOPs derived from glider observations are subsequently used to estimate remote sensing reflectance spectra that compare well with coincident satellite observations, providing independent validation of the general applicability of the bio-optical model. Various challenges in the generation of a robust bio-optical model involving dealing with partial and limited quantity datasets and the interpretation of data from the optical triplet sensor are discussed. Establishing this quantitative link between glider-borne and satellite-borne data sources is an important step in integrating these data streams and has wide applicability for current and future integrated autonomous observation systems. This article is part of the theme issue ‘The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning’.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.