Biological hydrolysis of microcrystalline cellulose is an uncommon feature in the microbial world, especially among bacteria and archaea growing optimally above 70°C (the so‐called extreme thermophiles). In fact, among this group only certain species in the genus Caldicellulosiruptor are capable of rapid and extensive cellulose degradation. Four novel multidomain glycoside hydrolases (GHs) from Caldicellulosiruptor morganii and Caldicellulosiruptor danielii were produced recombinantly in Caldicellulosiruptor bescii and characterized. These GHs are structurally organized with two or three catalytic domains flanking carbohydrate binding modules from Family 3. Collectively, these enzymes represent GH families 5, 9, 10, 12, 44, 48, and 74, and hydrolyze crystalline cellulose, glucan, xylan, and mannan, the primary carbohydrates in plant biomass. Degradation of microcrystalline cellulose by cocktails of GHs from three Caldicellulosiruptor species demonstrated that synergistic interactions enable mixtures of multiple enzymes to outperform single enzymes, suggesting a community mode of action for lignocellulose utilization in thermal environments. © 2018 American Institute of Chemical Engineers AIChE J, 64: 4218–4228, 2018
Neutral mutational drift is an important source of biological diversity that remains underexploited in fundamental studies of protein biophysics. This study uses a synthetic transcriptional circuit to study neutral drift in protein tyrosine phosphatase 1B (PTP1B), a mammalian signaling enzyme for which conformational changes are rate limiting. Kinetic assays of purified mutants indicate that catalytic activity, rather than thermodynamic stability, guides enrichment under neutral drift, where neutral or mildly activating mutations can mitigate the effects of deleterious ones. In general, mutants show a moderate activity‐stability tradeoff, an indication that minor improvements in the activity of PTP1B do not require concomitant losses in its stability. Multiplexed sequencing of large mutant pools suggests that substitutions at allosterically influential sites are purged under biological selection, which enriches for mutations located outside of the active site. Findings indicate that the positional dependence of neutral mutations within drifting populations can reveal the presence of allosteric networks and illustrate an approach for using synthetic transcriptional systems to explore these mutations in regulatory enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.