Environmental DNA (eDNA) monitoring approaches promise to greatly improve detection of rare, endangered and invasive species in comparison with traditional field approaches. Herein, eDNA approaches and traditional seining methods were applied at 29 research locations to compare method-specific estimates of detection and occupancy probabilities for endangered tidewater goby (Eucyclogobius newberryi). At each location, multiple paired seine hauls and water samples for eDNA analysis were taken, ranging from two to 23 samples per site, depending upon habitat size. Analysis using a multimethod occupancy modelling framework indicated that the probability of detection using eDNA was nearly double (0.74) the rate of detection for seining (0.39). The higher detection rates afforded by eDNA allowed determination of tidewater goby occupancy at two locations where they have not been previously detected and at one location considered to be locally extirpated. Additionally, eDNA concentration was positively related to tidewater goby catch per unit effort, suggesting eDNA could potentially be used as a proxy for local tidewater goby abundance. Compared to traditional field sampling, eDNA provided improved occupancy parameter estimates and can be applied to increase management efficiency across a broad spatial range and within a diversity of habitats.
Differentiation between ecotypes is usually presumed to be complex and polygenic. Seasonal patterns of life history in salmon are used to categorize them into ecotypes, which are often considered “distinct” animals. Using whole-genome sequencing and tribal fishery sampling of Chinook salmon, we show that a single, small genomic region is nearly perfectly associated with spawning migration timing but not with adiposity or sexual maturity, traits long perceived as central to salmon ecotypes. Distinct migration timing does not prevent interbreeding between ecotypes, which are the result of a simple, ancient polymorphism segregating within a diverse population. Our finding that a complex migratory phenotype results from a single gene region will facilitate conservation and restoration of this iconic fish.
Mitochondrial DNA variation among 1246 individuals of Pacific lamprey (Entosphenus tridentatus) from 81 populations spanning 2600 km from the Skeena River, British Columbia, to the Ventura River, California, was surveyed using five restriction enzymes. A total of 29 composite haplotypes was detected in two gene fragments (ND2 and ND5). The three most common haplotypes, occurring in 91% of all samples, were present at similar frequencies in all regions. Samples were divided into six biogeographic regions based on sample distribution and geographical landmarks to assess geographic genetic structure. Analysis of molecular variance indicated that 99% of the genetic variation was explained by variability within drainages. The lack of geographical population structure is likely related to a life-history pattern that includes a prolonged larval freshwater stage, migration to oceanic feeding and return to fresh water to spawn. The lack of strong natal homing apparently promotes gene flow among drainages and regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.