Nutritional ketosis has been proven effective for seizure disorders and other neurological disorders. The focus of this study was to determine the effects of ketone supplementation on anxiety-related behavior in Sprague-Dawley (SPD) and Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. We tested exogenous ketone supplements added to food and fed chronically for 83 days in SPD rats and administered sub-chronically for 7 days in both rat models by daily intragastric gavage bolus followed by assessment of anxiety measures on elevated plus maze (EPM). The groups included standard diet (SD) or SD + ketone supplementation. Low-dose ketone ester (LKE; 1,3-butanediol-acetoacetate diester, ~10 g/kg/day, LKE), high dose ketone ester (HKE; ~25 g/kg/day, HKE), beta-hydroxybutyrate-mineral salt (βHB-S; ~25 g/kg/day, KS) and βHB-S + medium chain triglyceride (MCT; ~25 g/kg/day, KSMCT) were used as ketone supplementation for chronic administration. To extend our results, exogenous ketone supplements were also tested sub-chronically on SPD rats (KE, KS and KSMCT; 5 g/kg/day) and on WAG/Rij rats (KE, KS and KSMCT; 2.5 g/kg/day). At the end of treatments behavioral data collection was conducted manually by a blinded observer and with a video-tracking system, after which blood βHB and glucose levels were measured. Ketone supplementation reduced anxiety on EPM as measured by less entries to closed arms (sub-chronic KE and KS: SPD rats and KSMCT: WAG/Rij rats), more time spent in open arms (sub-chronic KE: SPD and KSMCT: WAG/Rij rats; chronic KSMCT: SPD rats), more distance traveled in open arms (chronic KS and KSMCT: SPD rats) and by delayed latency to entrance to closed arms (chronic KSMCT: SPD rats), when compared to control. Our data indicates that chronic and sub-chronic ketone supplementation not only elevated blood βHB levels in both animal models, but reduced anxiety-related behavior. We conclude that ketone supplementation may represent a promising anxiolytic strategy through a novel means of inducing nutritional ketosis.
Gliomas are a highly heterogeneous tumor, refractory to treatment and the most frequently diagnosed primary brain tumor. Although the current WHO grading system (2016) demonstrates promise towards identifying novel treatment modalities and better prediction of prognosis over time, to date, existing targeted and mono therapy approaches have failed to elicit a robust impact on disease progression and patient survival. It is possible that tumor heterogeneity as well as specifically targeted agents fail because redundant molecular pathways in the tumor make it refractory to such approaches. Additionally, the underlying metabolic pathology, which is significantly altered during neoplastic transformation and tumor progression, is unaccounted for. With several molecular and metabolic pathways implicated in the carcinogenesis of CNS tumors, including glioma, we postulate that a systemic, broad spectrum approach to produce robust targeting of relevant and multiple molecular and metabolic regulation of growth and survival pathways, critical to the modulation of hallmarks of carcinogenesis, without clinically limiting toxicity, may provide a more sustained impact on clinical outcomes compared to the modalities of treatment evaluated to date. The objective of this review is to examine the emerging hallmark of reprogramming energy metabolism of the tumor cells and the tumor microenvironment during carcinogenesis, and to provide a rationale for exploiting this hallmark and its biological capabilities as a target for secondary chemoprevention and treatment of glioma. This review will primarily focus on interventions to induce ketosis to target the glycolytic phenotype of many cancers, with specific application to secondary chemoprevention of low grade glioma- to halt the progression of lower grade tumors to more aggressive subtypes, as evidenced by reduction in validated intermediate endpoints of disease progression including clinical symptoms.
Athletes, clinicians, and practitioners are increasingly interested in the proposed performance and therapeutic benefits of nutritional ketosis (NK). NK is best operationally defined as a nutritionally induced metabolic state resulting in blood β-hydroxybutyrate concentrations of ≥0.5 mM. Most tissues readily metabolize ketone bodies (KBs), and KBs in turn regulate metabolism and signaling in both a systemic and tissue-specific manner. During fasting, starvation, or ketogenic diets, endogenous synthesis of KBs is amplified resulting in a state of NK. Orally administered exogenous ketone supplements rapidly elevate circulating KBs and produce a similar, but far from identical, metabolic state. NK results in a number of convergent features regardless of endogenous or exogenous induction; however, important differences also are observed. The implications of NK across health, disease, and performance is rapidly becoming more evident, thus acknowledging the convergent and divergent features of NK is critical for fully understanding the potential utility of this metabolic state.
Background Cancer Anorexia Cachexia Syndrome (CACS) is a distinct atrophy disease negatively influencing multiple aspects of clinical care and patient quality of life. Although it directly causes 20% of all cancer‐related deaths, there are currently no model systems that encompass the entire multifaceted syndrome, nor are there any effective therapeutic treatments. Methods A novel model of systemic metastasis was evaluated for the comprehensive CACS (metastasis, skeletal muscle and adipose tissue wasting, inflammation, anorexia, anemia, elevated protein breakdown, hypoalbuminemia, and metabolic derangement) in both males and females. Ex vivo skeletal muscle analysis was utilized to determine ubiquitin proteasome degradation pathway activation. A novel ketone diester ( R/S 1,3‐Butanediol Acetoacetate Diester) was assessed in multifaceted catabolic environments to determine anti‐atrophy efficacy. Results Here, we show that the VM‐M3 mouse model of systemic metastasis demonstrates a novel, immunocompetent, logistically feasible, repeatable phenotype with progressive tumor growth, spontaneous metastatic spread, and the full multifaceted CACS with sex dimorphisms across tissue wasting. We also demonstrate that the ubiquitin proteasome degradation pathway was significantly upregulated in association with reduced insulin‐like growth factor‐1/insulin and increased FOXO3a activation, but not tumor necrosis factor‐α‐induced nuclear factor‐kappa B activation, driving skeletal muscle atrophy. Additionally, we show that R/S 1,3‐Butanediol Acetoacetate Diester administration shifted systemic metabolism, attenuated tumor burden indices, reduced atrophy/catabolism and mitigated comorbid symptoms in both CACS and cancer‐independent atrophy environments. Conclusions Our findings suggest the ketone diester attenuates multifactorial CACS skeletal muscle atrophy and inflammation‐induced catabolism, demonstrating anti‐catabolic effects of ketone bodies in multifactorial atrophy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.