Phases of matter are usually identified through the lens of spontaneous symmetry breaking, which particularly applies to unconventional superconductivity and the interactions it originates from. In that context, the superconducting state of the quasi-two-dimensional and strongly correlated Sr 2 RuO 4 is uniquely held up as a solid-state analog to superfluid 3 He-A 1, 2 , with an odd-parity vector order parameter that is unidirectional in spin space for all electron momenta and also breaks time-reversal symmetry. This characterization was recently * These authors contributed equally to this work. 1 called into question by a search for, and failure to find, evidence for an expected "split" transition while subjecting a Sr 2 RuO 4 crystal to in-plane uniaxial pressure; instead a dramatic rise and peak in a single transition temperature was observed 3, 4. NMR spectroscopy, which is directly sensitive to the order parameter via the hyperfine coupling to the electronic spin degrees of freedom, is exploited here to probe the nature of superconductivity in Sr 2 RuO 4 and its evolution under strained conditions. A reduction of Knight shifts K is observed for all strain values and temperatures T < T c , consistent with a drop in spin polarization in the superconducting state. In unstrained samples, our results are in contradiction with a body of previous NMR work 5 , and with the most prominent previous proposals for the order parameter. Sr 2 RuO 4 is an extremely clean layered perovskite, and the superconductivity emerges from a strongly correlated Fermi Liquid. The present work imposes tight constraints on the order-parameter symmetry of this archetypal system. The normal state of Sr 2 RuO 4 is based on three bands crossing the Fermi level 6, 7 , with pronounced strong-correlation characteristics linked to Hund's Rule coupling of the partially filled Ru t 2g orbitals dominating the Fermi surface. The transition to a superconducting ground state at T c =1.5 K 8 , with indirect evidence for proximity to ferromagnetism, led to the suggestion that the pair wave functions of the superconducting state likely exhibit a symmetric spin part, i.e., triplet 1. Crucial support for the existence of a triplet order parameter rested on NMR spectroscopy, which showed no change in Knight shift between normal and superconducting states 5. Later, several experiments produced evidence for time-reversal symmetry breaking (TRSB) 9, 10. Together, these reports aligned well to the above-mentioned proposal that Sr 2 RuO 4 is a very clean, quasi two
We explore the interplay of electron-electron correlations and spin-orbit coupling in the model Fermi liquid Sr2RuO4 using laser-based angle-resolved photoemission spectroscopy. Our precise measurement of the Fermi surface confirms the importance of spin-orbit coupling in this material and reveals that its effective value is enhanced by a factor of about two, due to electronic correlations. The self-energies for the β and γ sheets are found to display significant angular dependence. By taking into account the multi-orbital composition of quasiparticle states, we determine self-energies associated with each orbital component directly from the experimental data. This analysis demonstrates that the perceived angular dependence does not imply momentum-dependent many-body effects, but arises from a substantial orbital mixing induced by spin-orbit coupling. A comparison to single-site dynamical mean-field theory further supports the notion of dominantly local orbital self-energies, and provides strong evidence for an electronic origin of the observed non-linear frequency dependence of the self-energies, leading to 'kinks' in the quasiparticle dispersion of Sr2RuO4. * present address: ISIS Facility, Rutherford
Cuprates exhibit antiferromagnetic, charge density wave (CDW), and high-temperature superconducting ground states that can be tuned by means of doping and external magnetic fields. However, disorder generated by these tuning methods complicates the interpretation of such experiments. Here, we report a high-resolution inelastic x-ray scattering study of the high-temperature superconductor YBa2Cu3O6.67under uniaxial stress, and we show that a three-dimensional long-range-ordered CDW state can be induced through pressure along theaaxis, in the absence of magnetic fields. A pronounced softening of an optical phonon mode is associated with the CDW transition. The amplitude of the CDW is suppressed below the superconducting transition temperature, indicating competition with superconductivity. The results provide insights into the normal-state properties of cuprates and illustrate the potential of uniaxial-pressure control of competing orders in quantum materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.