The Knoevenagel condensation of 1,3-dihydro-2H-indol-2-one with ferrocene carboxaldehyde afforded an approximate 2:1 mixture of the geometrical isomers (E)- and (Z)-3-ferrocenylmethylidene-1,3-dihydro-2H-indol-2-one respectively in an overall 67% yield; the air and solution-stable isomers were readily separated by preparative thin layer chromatography and their structures were unequivocally elucidated in solution, by (1)H NMR spectroscopy, and in the solid phase, by X-ray crystallography; both isomers of displayed in vitro toxicity against B16 melanoma and Vero cell lines in the micromolar range and inhibited the kinase VEGFR-2 with IC(50) values of ca. 200 nM.
IR and Raman spectra of eugenol, isoeugenol and methyl eugenol have been obtained in the liquid phase. Vibrational spectroscopic results are discussed in relation to computed structures and spectra of the low energy conformations of these molecules obtained from DFT calculations at the B3LYP/cc-pVTZ level. Although computed differences in vibrational spectra for the different conformers were generally small, close examination, in conjunction with the experimental spectra, enabled conformational analysis of all three molecules. Anharmonic contributions to computed vibrational spectra were obtained from calculations of cubic and quartic force constants at the B3LYP/DZ level. This permitted the determination of the anharmonic fundamentals for comparison with the experimental IR and Raman band positions, leading to an excellent fit between calculated and experimental spectra. Band assignments were obtained in terms of potential energy distributions (ped's).
Experimental Raman and FT-IR spectra of solid-state non-deuterated andN-deuterated samples of cyclo(L-Met-L-Met) are reported and discussed. The Raman and FT-IR results show characteristic amide I vibrations (Raman: 1649 cm −1 , infrared: 1675 cm −1 ) for molecules exhibiting a cis amide conformation. A Raman band, assigned to the cis amide II vibrational mode, is observed at ∼1493 cm −1 but no IR band is observed in this region. Cyclo(L-Met-L-Met) crystallises in the triclinic space group P1 with one molecule per unit cell. The overall shape of the diketopiperazine (DKP) ring displays a (slightly distorted) boat conformation. The crystal packing employs two strong hydrogen bonds, which traverse the entire crystal via translational repeats. B3-LYP/cc-pVDZ calculations of the structure of the molecule predict a boat conformation for the DKP ring, in agreement with the experimentally determined X-ray structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.