State construction is important for learning in partially observable environments. A general purpose strategy for state construction is to learn the state update using a Recurrent Neural Network (RNN), which updates the internal state using the current internal state and the most recent observation. This internal state provides a summary of the observed sequence, to facilitate accurate predictions and decision-making. At the same time, specifying and training RNNs is notoriously tricky, particularly as the common strategy to approximate gradients back in time, called truncated Back-prop Through Time (BPTT), can be sensitive to the truncation window. Further, domain-expertise—which can usually help constrain the function class and so improve trainability—can be difficult to incorporate into complex recurrent units used within RNNs. In this work, we explore how to use multi-step predictions to constrain the RNN and incorporate prior knowledge. In particular, we revisit the idea of using predictions to construct state and ask: does constraining (parts of) the state to consist of predictions about the future improve RNN trainability? We formulate a novel RNN architecture, called a General Value Function Network (GVFN), where each internal state component corresponds to a prediction about the future represented as a value function. We first provide an objective for optimizing GVFNs, and derive several algorithms to optimize this objective. We then show that GVFNs are more robust to the truncation level, in many cases only requiring one-step gradient updates.
Model-based strategies for control are critical to obtain sample efficient learning. Dyna is a planning paradigm that naturally interleaves learning and planning, by simulating one-step experience to update the action-value function. This elegant planning strategy has been mostly explored in the tabular setting. The aim of this paper is to revisit sample-based planning, in stochastic and continuous domains with learned models. We first highlight the flexibility afforded by a model over Experience Replay (ER). Replay-based methods can be seen as stochastic planning methods that repeatedly sample from a buffer of recent agent-environment interactions and perform updates to improve data efficiency. We show that a model, as opposed to a replay buffer, is particularly useful for specifying which states to sample from during planning, such as predecessor states that propagate information in reverse from a state more quickly. We introduce a semi-parametric model learning approach, called Reweighted Experience Models (REMs), that makes it simple to sample next states or predecessors. We demonstrate that REM-Dyna exhibits similar advantages over replay-based methods in learning in continuous state problems, and that the performance gap grows when moving to stochastic domains, of increasing size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.