BackgroundStroke is the most common cause of disability in the developed world and can severely degrade walking function. Robot-driven gait therapy can provide assistance to patients during training and offers a number of advantages over other forms of therapy. These potential benefits do not, however, seem to have been fully realised as of yet in clinical practice.ObjectivesThis review determines ways in which robot-driven gait technology could be improved in order to achieve better outcomes in gait rehabilitation.MethodsThe literature on gait impairments caused by stroke is reviewed, followed by research detailing the different pathways to recovery. The outcomes of clinical trials investigating robot-driven gait therapy are then examined. Finally, an analysis of the literature focused on the technical features of the robot-based devices is presented. This review thus combines both clinical and technical aspects in order to determine the routes by which robot-driven gait therapy could be further developed.ConclusionsActive subject participation in robot-driven gait therapy is vital to many of the potential recovery pathways and is therefore an important feature of gait training. Higher levels of subject participation and challenge could be promoted through designs with a high emphasis on robotic transparency and sufficient degrees of freedom to allow other aspects of gait such as balance to be incorporated.
Fully electric vehicles (FEVs) with individually controlled powertrains can significantly enhance vehicle response to steering-wheel inputs in both steady-state and transient conditions, thereby improving vehicle handling and, thus, active safety and the fun-to-drive element. This paper presents a comparison between different torque-vectoring control structures for the yaw moment control of FEVs. Two second-order sliding-mode controllers are evaluated against a feedforward controller combined with either a conventional or an adaptive proportionalintegral-derivative (PID) controller. Furthermore, the potential performance and robustness benefits arising from the integration of a body sideslip controller with the yaw rate feedback control system are assessed. The results show that all the evaluated controllers are able to significantly change the understeer behavior with respect to the baseline vehicle. The PID-based controllers achieve very good vehicle performance in steady-state and transient conditions, whereas the controllers based on the sliding-mode approach demonstrate a high level of robustness against variations in the vehicle parameters. The integrated sideslip controller effectively maintains the sideslip angle within acceptable limits in the case of an erroneous estimation of the tire-road friction coefficient.
Individually-controlled electric motors provide opportunities for enhancing the handling characteristics and energy efficiency of fully electric vehicles. Online power loss minimisation schemes based on electric motor efficiency data may, however, be impractical for real-time implementation due to the heavy computational demand. In this paper, the optimal wheel torque distribution for minimal power losses in the electric motor drives is evaluated in an offline optimisation procedure and then approximated using a simple function for online control allocation. The wheel torque allocation scheme is evaluated via a simulation approach incorporating constant speed driving at constant speed, ramp and step steer manoeuvres. The energy efficient wheel torque allocation scheme provides motor power loss reductions and yields savings in the total power utilisation compared to a simpler method in which the torques are evenly distributed across the four wheels. The method does not rely on complex online optimisation and can be applied on real electric vehicles in order to improve efficiency and thus reduce power consumption during different manoeuvres.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.