The claw geometry of birds can be used to predict their mode of life. Previous studies, however, have not considered how bird size might affect these predictions. Thus, in the present study, the geometric scaling relationships of bird claws are examined for a variety of extant birds with different modes of life: predatory, climbing, perching or ground-dwelling. Measurements of hind-limb claw radius (i.e. claw size) and claw angle (i.e. claw 'hookedness') of the third digit claw were made on 120 species of bird ranging from 0.0057 kg to 44 kg in body mass. Claw radius was found to be proportional to (body mass) 0.34 across all species. Claw angle was found to increase with body mass for predatory and climbing birds (i.e. bigger birds have relatively more hooked claws), and decrease with body mass for ground-dwelling birds (i.e. bigger birds have relatively less hooked or flatter claws). No significant relationship was found between claw angle and body mass for perching birds. Mode of life could not be predicted with any certainty using measurements of either claw radius or claw angle, suggesting difficulty in assigning fossil species such as Archaeopteryx to a specific locomotor category. As claw design should enable the claw to withstand the forces placed upon it, further work is needed to establish the stresses experienced by the claws of different types of bird.
Diesel engine combustion releases many harmful components, thus there are continuous efforts into improving the efficiency of these engines and reducing the harmful gasses and particulates to meet the emission authorities targets. To develop and sell new engine-related products, these engines are required to run and to be audited in diesel engine test cells. A critical measurement for benchmark testing is the exhaust back-pressure, which is the resultant exhaust flow from the engine and a product of the air and fuel consumed. The back-pressure is controlled by restricting the flow of the exhaust using a butterfly valve and this pressure must be set to the defined limits to ensure engine compliance. Setting this limit takes time and consumes large volumes of fuel, which causes additional emissions. Therefore, a feedback control solution to regulate this back-pressure is desirable. In current practice, a moving average filter is used on two commercial standard engine softwares – SGS CyFlex® and AVL Puma 2® Data Acquisition and Control Systems to provide a useful signal for feedback control. Considering the presence of erratic noise associated with the back-pressure measurement, a Kalman Filter with tunable measurement uncertainty and process noise gains is also considered. By modifying the script in SGS CyFlex® and AVL PUMA 2®, a Kalman Filter is implemented for the first time on diesel engine test cells and a comparative analysis between the performance of the two filters is provided. Both filters effectively reduce the noise of the system, with the Kalman Filter showing a closer tracking to the desired system response. This demonstrates the potential of applying the Kalman Filter to provide the feedback signal for improved back-pressure control that could reduce the fuel consumption during testing, thereby makes testing process more economical and environment friendly. The script and results presented in this work will open up the opportunities of applying Kalman filtering method’s in various engine testing functions, which will have broader impact in the current industrial practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.