Datacenter workloads demand high computational capabilities, flexibility, power efficiency, and low cost. It is challenging to improve all of these factors simultaneously. To advance datacenter capabilities beyond what commodity server designs can provide, we have designed and built a composable, reconfigurable fabric to accelerate portions of large-scale software services. Each instantiation of the fabric consists of a 6x8 2-D torus of high-end Stratix V FPGAs embedded into a half-rack of 48 machines. One FPGA is placed into each server, accessible through PCIe, and wired directly to other FPGAs with pairs of 10 Gb SAS cables.In this paper, we describe a medium-scale deployment of this fabric on a bed of 1,632 servers, and measure its efficacy in accelerating the Bing web search engine. We describe the requirements and architecture of the system, detail the critical engineering challenges and solutions needed to make the system robust in the presence of failures, and measure the performance, power, and resilience of the system when ranking candidate documents. Under high load, the largescale reconfigurable fabric improves the ranking throughput of each server by a factor of 95% for a fixed latency distributionor, while maintaining equivalent throughput, reduces the tail latency by 29%.
No abstract
Datacenter workloads demand high computational capabilities, flexibility, power efficiency, and low cost. It is challenging to improve all of these factors simultaneously. To advance datacenter capabilities beyond what commodity server designs can provide, we designed and built a composable, reconfigurable hardware fabric based on field programmable gate arrays (FPGA). Each server in the fabric contains one FPGA, and all FPGAs within a 48-server rack are interconnected over a low-latency, high-bandwidth network. We describe a medium-scale deployment of this fabric on a bed of 1632 servers, and measure its effectiveness in accelerating the ranking component of the Bing web search engine. We describe the requirements and architecture of the system, detail the critical engineering challenges and solutions needed to make the system robust in the presence of failures, and measure the performance, power, and resilience of the system. Under high load, the large-scale reconfigurable fabric improves the ranking throughput of each server by 95% at a desirable latency distribution or reduces tail latency by 29% at a fixed throughput. In other words, the reconfigurable fabric enables the same throughput using only half the number of servers.
Silicon technology will continue to provide an exponential increase in the availability of raw transistors. Effectively translating this resource into application performance, however, is an open challenge that conventional superscalar designs will not be able to meet. We present WaveScalar as a scalable alternative to conventional designs. WaveScalar is a dataflow instruction set and execution model designed for scalable, low-complexity/high-performance processors. Unlike previous dataflow machines, WaveScalar can efficiently provide the sequential memory semantics that imperative languages require. To allow programmers to easily express parallelism, WaveScalar supports pthread-style, coarse-grain multithreading and dataflow-style, fine-grain threading. In addition, it permits blending the two styles within an application, or even a single function.To execute WaveScalar programs, we have designed a scalable, tile-based processor architecture called the WaveCache. As a program executes, the WaveCache maps the program's instructions onto its array of processing elements (PEs). The instructions remain at their processing elements for many invocations, and as the working set of instructions changes, the WaveCache removes unused instructions and maps new ones in their place. The instructions communicate directly with one another over a scalable, hierarchical on-chip interconnect, obviating the need for long wires and broadcast communication.This article presents the WaveScalar instruction set and evaluates a simulated implementation based on current technology. For single-threaded applications, the WaveCache achieves performance on par with conventional processors, but in less area. For coarse-grain threaded applications the WaveCache achieves nearly linear speedup with up to 64 threads and can sustain 7-14 multiply-accumulates per cycle on fine-grain threaded versions of well-known kernels. Finally, we apply both styles of threading to equake from Spec2000 and speed it up by 9x compared to the serial version.
Homomorphic encryption allows computation on encrypted data and makes it possible to securely outsource computational tasks to untrusted environments. However, all proposed schemes are quite inefficient and homomorphic evaluation of ciphertexts usually takes several seconds on high-end CPUs, even for evaluating simple functions. In this work we investigate the potential of FPGAs for speeding up those evaluation operations. We propose an architecture to accelerate schemes based on the ring learning with errors (RLWE) problem and specifically implemented the somewhat homomorphic encryption scheme YASHE, which was proposed by Bos, Lauter, Loftus, and Naehrig in 2013. Due to the large size of ciphertexts and evaluation keys, on-chip storage of all data is not possible and external memory is required. For efficient utilization of the external memory we propose an efficient double-buffered memory access scheme and a polynomial multiplier based on the number theoretic transform (NTT). For the parameter set (n = 16384, log 2 q = 512) capable of evaluating 9 levels of multiplications, we can perform a homomorphic addition in 0.94 ms and a homomorphic multiplication in 48.67 ms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.