GPS signals, the main origin of navigation, are not functional in indoor environments. Therefore, Wi-Fi access points have started to be increasingly used for localization and tracking inside the buildings by relying on fingerprint-based approach. However, with these types of approaches, several concerns regarding the privacy of the users have arisen. Malicious individuals can determine a clients daily habits and activities by simply analyzing their wireless signals. While there are already efforts to incorporate privacy to the existing fingerprint-based approaches, they are limited to the characteristics of the homomorphic cryptographic schemes they employed. In this paper, we propose to enhance the performance of these approaches by exploiting another homomorphic algorithm, namely DGK, with its unique encrypted sorting capability and thus pushing most of the computations to the server side. We developed an Android app and tested our system within a Columbia University dormitory. Compared to existing systems, the results indicated that more power savings can be achieved at the client side and DGK can be a viable option with more powerful server computation capabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.