Excessive alcohol consumption is one of the main causes of death and disability worldwide. Alcohol consumption is a heritable complex trait. We conducted a meta-analysis of genome-wide association studies (GWAS) of gram/day (g/d) alcohol consumption in UK-Biobank, AlcGen and CHARGE+ consortia accumulating 480,842 people of European descent to decipher the genetic architecture of alcohol intake. We identified 46 novel, common loci, and investigated their potential functional significance using magnetic resonance imaging data and gene expression studies. Our results identify genetic pathways associated with alcohol consumption and suggest shared genetic mechanisms with neuropsychiatric disorders including schizophrenia.
Alcohol use is highly prevalent in the United States and across the world, and every year millions of people suffer from alcohol use disorders (AUDs). Although the genetic contribution to developing AUDs is estimated to be 50-60%, many of the underlying molecular mechanisms remain unclear. Previous studies from our laboratory revealed that Drosophila melanogaster lacking RhoGAP18B and Ras Suppressor 1 (Rsu1) display reduced sensitivity to ethanol-induced sedation. Both Rsu1 and RhoGAP18B are negative regulators of the small Rho-family GTPase, Rac1, a modulator of actin dynamics. Here we investigate the role of Rac1 and its downstream target, the actin-severing protein cofilin, in alcohol consumption preference. We show that these two regulators of actin dynamics can alter male experience-dependent alcohol preference in a bidirectional manner: expressing either activated Rac1 or dominant-negative cofilin in the mushroom bodies (MBs) abolishes experience-dependent alcohol preference. Conversely, dominant-negative Rac1 or activated cofilin MB expression lead to faster acquisition of alcohol preference. Our data show that Rac1 and cofilin activity are key to determining the rate of acquisition of alcohol preference, revealing a critical role of actin dynamics regulation in the development of voluntary selfadministration in Drosophila.
Excessive alcohol consumption is one of the main causes of death and disability worldwide. Alcohol consumption is a heritable complex trait. We conducted a genome-wide association study (GWAS) of alcohol use in ~480,000 people of European descent to decipher the genetic architecture of alcohol intake. We identified 46 novel, common loci, and investigated their potential functional significance using magnetic resonance imaging data, gene expression and behavioral studies in Drosophila. Our results identify new genetic pathways associated with alcohol consumption and suggest common genetic mechanisms with several neuropsychiatric disorders including schizophrenia.Excessive alcohol consumption is a major public health problem that is responsible 1 for 2.2% and 6.8% age-standardized deaths for women and men respectively 1 . Most 2 genetic studies of alcohol use focus on alcohol dependency, although the burden of 3 alcohol-related disease mainly reflects a broader range of alcohol consumption 4 behaviors in a population 2 . Small reductions in alcohol intake could have major public 5 health benefits; a recent study reported that even moderate daily alcohol may have 6 significant impact on mortality 3 .
Alcohol use is highly prevalent in the United States and across the world, and every year millions of people suffer from alcohol use disorders (AUDs). While the genetic contribution to developing AUDs is estimated to be 50-60%, many of the underlying molecular mechanisms remain unclear. Previous studies from our lab revealed that Drosophila lacking RhoGAP18B and Ras Suppressor 1 (Rsu1) display reduced sensitivity to ethanol-induced sedation. Both Rsu1 and RhoGAP18B are negative regulators of the small Rho-family GTPase, Rac1, a modulator of actin dynamics. Here we investigate the role of Rac1 and its downstream target, the actin-severing protein cofilin, in alcohol consumption preference. We show that these two regulators of actin dynamics can alter experience-dependent alcohol preference in a bidirectional manner: expressing either activated Rac1 or dominant-negative cofilin in the mushroom bodies (MB) abolishes experience-dependent alcohol preference. Conversely, dominant-negative Rac1 or activated cofilin MB expression lead to faster acquisition of alcohol preference. Our data show that Rac1 and cofilin activity are key to determining the rate of acquisition of alcohol preference, revealing a critical role of actin dynamics regulation in the development of voluntary self-administration in Drosophila.Significance StatementThe risks for developing an alcohol use disorder (AUD) are strongly determined by genetic factors. Understanding the genes and molecular mechanisms that contribute to that risk is therefore a necessary first step for the development of targeted therapeutic intervention. Here we show that regulators of actin cytoskeleton dynamics can bidirectionally determine the acquisition rate of alcohol self-administration, highlighting this process as a key mechanism contributing to the risk of AUD development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.