This contribution describes the preparation of strong anion-exchange membranes with higher protein binding capacities than the best commercial resins. Quaternary amine (Q-type) anion-exchange membranes were prepared by grafting polyelectrolyte nanolayers from the surfaces of macroporous membrane supports. A focus of this study was to better understand the role of polymer nanolayer architecture on protein binding. Membranes were prepared with different polymer chain graft densities using a newly developed surface-initiated polymerization protocol designed to provide uniform and variable chain spacing. Bovine serum albumin and immunoglobulin G were used to measure binding capacities of proteins with different size. Dynamic binding capacities of IgG were measured to evaluate the impact of polymer chain density on the accessibility of large size protein to binding sites within the polyelectrolyte nanolayer under flow conditions. The dynamic binding capacity of IgG increased nearly linearly with increasing polymer chain density, which suggests that the spacing between polymer chains is sufficient for IgG to access binding sites all along the grafted polymer chains. Furthermore, the high dynamic binding capacity of IgG (>130 mg/mL) was independent of linear flow velocity, which suggests that the mass transfer of IgG molecules to the binding sites occurs primarily via convection. Overall, this research provides clear evidence that the dynamic binding capacities of large biologics can be higher for well-designed macroporous membrane adsorbers than commercial membrane or resin ion-exchange products. Specifically, using controlled polymerization leads to anion-exchange membrane adsorbers with high binding capacities that are independent of flow rate, enabling high throughput. Results of this work should help to accelerate the broader implementation of membrane adsorbers in bioprocess purification steps.
The surface-initiated polymerization protocol developed in part I was used to prepare strong anion-exchange membranes with variable polymer chain graft densities and degrees of polymerization for DNA and virus particle separations. A focus of part II was to evaluate the role of polymer nanolayer architecture on DNA and virus binding. Salmon sperm-DNA (SS-DNA) was used as model nucleic acid to measure the dynamic-binding capacities at 10% breakthrough. The dynamic-binding capacity increases linearly with increasing poly ([2-(methacryloyloxy)ethyl]trimethylammonium chloride) chain density up to the highest chain density used in this study. The new membranes yielded threefold higher SS-DNA-binding capacity (30 mg/mL) than a leading commercial membrane with the same functional group chemistry. Elution of bound DNA yielded a sharp peak, and resulted in a 13-fold increase relative to the feed concentration. This concentration effect further demonstrates the highly favorable transport properties of the newly designed Q-type membranes. However, unlike findings in part I on protein binding, SS-DNA binding was not fully reversible. Minute virus of mice (MVM) was used as model virus to evaluate the virus clearance performance of newly designed Q-type membranes. Log reduction of virus (LRV) of MVM increased with increasing polymer chain density. Membranes exhibited >4.5 LRV for the given MVM impurity load and may be capable of higher LRV values, as the MVM concentration in the flow-through fraction of these samples was below the limit of detection of the assay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.