Retroviruses may cause diseases in their vertebrate hosts. They are distinguished by their common means of replication involving reverse transcription, a process inhibited by nucleoside reverse transcriptase inhibitors (NRTIs) and other compounds used in antiretroviral chemotherapy. Previous work on NRTIs has been limited to their effect on human immunodeficiency virus (HIV) (for review see Ho & Hitchcock, 1989; Weller, 1999) and little information exists regarding the efficacy and therapeutic potential of these drugs against other retroviruses. We have tested all six NRTIs licensed for HIV treatment [didanosine (ddI), zalcitabine (ddC), lamivudine (3TC), stavudine (d4T), zidovudine (AZT) and abacavir (ABC)] against seven retroviruses representative of the traditional subfamilies: Spumavirinae, Lentivirinae and the Oncovirinae. As expected, each drug showed a range of activities against the panel of retroviruses, some drugs inhibiting other viruses at concentrations well below those required for HIV. Overall, AZT was the most active inhibitor (IC50 range, 0.032–1.0 μM), being most active against the Spuma (foamy) viruses. Abacavir was inhibitory for HIV-1, MN strain (HIV-1 MN), amphotrophic murine leukemia virus (MLV-A) and simian foamy virus type 6 (SFV-6). The least effective inhibitor, 3TC (IC50 range, 0.32–>100 μM), was most potent against simian retrovirus types 1 and 2 (SRV-1, SRV-2) and HIV-1, but did not inhibit foamy viruses and MLV-A. Additionally, there were differences in the concentration of drug required to inhibit closely related viruses. Taken together, these data suggest that NRTIs have a wide spectrum of antiretroviral activity and the activity of compounds, even against closely related retroviruses, cannot be predicted.
The retroviral RNA genome is dimeric, consisting of two identical strands of RNA linked near their 5 ends by a dimer linkage structure. Previously it was shown that human foamy virus (HFV) RNA transcribed in vitro contained three sites, designated SI, SII, and SIII, which contributed to the dimerization process (O. Erlwein, D. Cain, N. Fischer, A. Rethwilm, and M. O. McClure, Virology 229:251-258, 1997). To characterize these sites further, a series of mutants were designed and tested for their ability to dimerize in vitro. The primer binding site and a G tetrad in SI were dispensable for dimerization. However, a mutant that changed the 3 end of SI migrated slower on nondenaturing gels than wild-type RNA dimers. The sequence composition of the SII palindrome, consisting of 10 nucleotides, proved to be critical for in vitro dimerization, since mutations within this sequence or replacement of the sequence with a different palindrome of equal length impaired in vitro dimerization. The length of the palindrome also seems to play an important role. A moderate extension to 12 nucleotides was tolerated, whereas an extension to 16 nucleotides or more impaired dimerization. When nucleotides flanking the palindrome were mutated in a random fashion, dimerization was unaffected. Changing the SIII sequence also led to decreased dimer formation, confirming its contribution to the dimerization process. Interesting mutants were cloned into the infectious molecular clone of HFV, HSRV-2, and were transfected into BHK-21 cells. Mutations in SII that reduced dimerization in vitro also abolished virus replication. In contrast, constructs containing mutations in SI and SIII replicated to some extent in cell culture after an initial drop in viral replication. Analysis of the SIM1 mutant revealed reversion to the wild type but with the insertion of an additional two nucleotides. Analysis of cell-free virions demonstrated that both replicationcompetent and replication-defective mutants packaged nucleic acid. Thus, efficient dimerization is a critical step for HFV to generate infectious virus, but HFV RNA dimerization is not a prerequisite for packaging.Foamy viruses (spumaviruses) are a subfamily of the family Retroviridae. Although they have a similar genomic structure to other retroviruses and replication is characterized by reverse transcription and provirus integration (17, 53), the foamy virus life cycle is quite divergent from that of other retroviruses (reviewed in reference 38). For example, expression of the Pol protein differs in that it is expressed from its own spliced mRNA rather than as a Gag-Pol fusion protein (16, 61), both Gag and Env proteins are needed for particle release (2, 21, 50), and vectors based on foamy virus sequences need nucleotides in the pol open reading frame (ORF) in addition to nucleotides in the 5Ј end for transduction (19,28,58). Atypically for retroviruses, but like hepadnaviruses, reverse transcription is a late event in the human foamy virus (HFV) life cycle, resulting in a considerable number of...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.