BackgroundThe use of dietary supplements to improve performance is becoming increasingly popular among athletes and fitness enthusiasts. Unfortunately, there is a tremendous lack of research being done regarding female athletes and the use of sport supplements. The purpose of this study was to examine the acute effects of multi-ingredient pre-workout supplement (MIPS) ingestion on resting metabolism and exercise performance in recreationally-active females.MethodsFifteen recreationally-active females participated in a randomized, double-blind, placebo controlled study. Subjects completed baseline, and two experimental testing sessions in a cross-over design fashion. Experimental testing included assessment of resting energy expenditure (REE), heart rate, and blood pressure following the ingestion of a MIPS or placebo. Subjects also completed a repetition to failure test for the back squat (BS) and bench press (BP) at 85% of their 5-repetition maximum followed by the assessment of anaerobic power using a counter-movement vertical jump test and a sprint test on a force-treadmill. Subjective measurements of energy, focus, and fatigue were also assessed using a 5-point Likert scale. Separate repeated measures analysis of variance (ANOVA) were used to assess differences in REE, cardiovascular responses, and subjective markers between conditions. Performance data were analyzed using paired Student’s T-tests.ResultsA significant main effect for condition was observed for REE (p = 0.021) and diastolic blood pressure (p = 0.011) following ingestion of the MIPS. The supplement condition resulted in a greater number of BP repetitions to failure and total work completed during treadmill test (p = 0.039) compared to placebo (p = 0.037). A significant condition x time interaction for focus was observed with the supplement treatment exhibiting improved focus at 80-min post ingestion (p = 0.046).ConclusionsConsumption of a MIPS increased resting metabolism following a single dose accompanied by an increase in diastolic blood pressure. Furthermore, acute MIPS ingestion improved upper body muscular endurance and anaerobic capacity while improving feelings of focus following high-intensity exercise in recreationally active females.
In recent years, a new class of dietary supplements called multi-ingredient pre-workout supplements (MIPS) has increased in popularity. These supplements are intended to be taken prior to exercise and typically contain a blend of ingredients such as caffeine, creatine, beta-alanine, amino acids, and nitric oxide agents, the combination of which may elicit a synergistic effect on acute exercise performance and subsequent training adaptations compared to single ingredients alone. Therefore, the purpose of this article was to review the theoretical rationale and available scientific evidence assessing the potential ergogenic value of acute and chronic ingestion of MIPS, to address potential safety concerns surrounding MIPS supplementation, and to highlight potential areas for future research. Though direct comparisons between formulations of MIPS or between a MIPS and a single ingredient are challenging and often impossible due to the widespread use of “proprietary blends” that do not disclose specific amounts of ingredients in a given formulation, a substantial body of evidence suggests that the acute pre-exercise consumption of MIPS may positively influence muscular endurance and subjective mood, though mixed results have been reported regarding the acute effect of MIPS on force and power production. The chronic consumption of MIPS in conjunction with a periodized resistance training program appears to augment beneficial changes in body composition through increased lean mass accretion. However, the impact of long-term MIPS supplementation on force production, muscular endurance, aerobic performance, and subjective measures is less clear. MIPS ingestion appears to be relatively safe, though most studies that have assessed the safety of MIPS are relatively short (less than eight weeks) and thus more information is needed regarding the safety of long-term supplementation. As with any dietary supplement, the use of MIPS carries implications for the athlete, as many formulations may intentionally contain banned substances as ingredients or unintentionally as contaminants. We suggest that athletes thoroughly investigate the ingredients present in a given MIPS prior to consumption. In conclusion, it appears that multi-ingredient pre-workout supplements have promise as an ergogenic aid for active individuals, though further information is required regarding long-term efficacy and safety in a wider variety of populations.
BackgroundMulti-ingredient pre-workout supplements (MIPS) are popular among resistance trained individuals. Previous research has indicated that acute MIPS ingestion may increase muscular endurance when using a hypertrophy-based protocol but less is known in regard to their effects on strength performance and high intensity running capacity. Therefore, the purpose was to determine if short-term, MIPS ingestion influences strength performance and anaerobic running capacity.MethodsIn a double-blind, randomized, placebo controlled, crossover design; 12 males (19 ± 1 yrs.; 180 ± 12 cm; 89.3 ± 11 kg; 13.6 ± 4.9 %BF) had their body composition assessed followed by 5-repetition maximum (5RM) determination of back squat (BS; 119.3 ± 17.7 kg) and bench press (BP; 92.1 ± 17.8 kg) exercises. On two separate occasions subjects ingested a MIPS or a placebo (P) 30-minutes prior to performing a counter movement vertical jump test, 5 sets of 5 repetitions at 85 % of 5RM of BS and BP, followed by a single set to failure, and an anaerobic capacity sprint test to assess peak and mean power. Subjective markers of energy levels and fatigue were also assessed. Subjects returned one week later for a second testing session using counter treatment.ResultsMIPS resulted in a greater number of repetitions performed in the final set to failure in the BP (MIPS, 9.8 ± 1.7 repetitions; P, 9.1 ± 2; p = 0.03, d = 0.38), which led to a greater total volume load (set x repetitions x load) in the MIPS (753 ± 211 kg) compared to P (710 ± 226 kg; p =0.03, d = .20). MIPS ingestion improved subjective markers of fatigue (p = 0.01, d = 3.78) and alertness (p = 0.048, d = 2.72) following a bout of resistance training. An increase in mean power was observed in the MIPS condition (p = 0.03, d = 0.25) during the anaerobic sprint test.ConclusionResults suggest that acute ingestion of a MIPS study may increase upper body muscular endurance. In addition, acute MIPS ingestion improved mean power output during an anaerobic capacity sprint test. However, the practical significance of these performance related outcomes may be minimal due to the small effect sizes observed. MIPS ingestion does appear to positively influence subjective markers of fatigue and alertness during high-intensity exercise.
Jagim, AR, Camic, CL, Kisiolek, J, Luedke, J, Erickson, J, Jones, MT, and Oliver, JM. Accuracy of resting metabolic rate prediction equations in athletes. J Strength Cond Res 32(7): 1875-1881, 2018-The purpose of this study was to determine the accuracy of 5 different resting metabolic rate (RMR) prediction equations in male and female athletes. Twenty-two female (19.7 ± 1.4 years; 166.2 ± 5.5 cm; 63.5 ± 7.3 kg; 49.2 ± 4.3 kg of fat-free mass (FFM); 23.4 ± 4.4 body fat (BF) percent) and 28 male (20.2 ± 1.6 years; 181.9 ± 6.1 cm; 94.5 ± 16.2 kg; 79.1 ± 7.2 kg of FFM; 15.1 ± 8.5% BF) athletes were recruited to participate in 1 day of metabolic testing. Assessments comprised RMR measurements using indirect calorimetry, and body composition analyses using air displacement plethysmography. One-way repeated-measures analysis of variance with follow-up paired t tests were selected to determine differences between indirect calorimetry and 5 RMR prediction equations. Linear regression analysis was used to assess the accuracy of each RMR prediction method. An alpha level of p ≤ 0.05 was used to determine statistical significance. All the prediction equations significantly underestimated RMR while the Cunningham equation had the smallest mean difference (-165 kcals). In men, the Harris-Benedict equation was found to be the best prediction formula with the lowest root-mean-square prediction error value of 284 kcals. In women, the Cunningham equation was found to be the best prediction equation with the lowest root-mean-squared error value of 110 kcals. Resting metabolic rate prediction equations consistently seem to underestimate RMR in male and female athletes. The Harris-Benedict equation seems to be most accurate for male athletes, whereas the Cunningham equation may be better suited for female athletes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.