Switchgrass (Panicum virgatum), a central and Eastern USA native, is highly valued as a component in tallgrass prairie and savanna restoration and conservation projects and a potential bioenergy feedstock. The purpose of this study was to identify regional diversity, gene pools, and centers-of-diversity of switchgrass to gain an understanding of its post-glacial evolution and to identify both the geographic range and potential overlap between functional gene pools. We sampled a total of 384 genotypes from 49 accessions that included the three main taxonomic groups of switchgrass (lowland 4x, upland 4x, and upland 8x) along with one accession possessing an intermediate phenotype. We identified primary centers of diversity for switchgrass in the eastern and western Gulf Coast regions. Migration, drift, and selection have led to adaptive radiation in switchgrass, creating regional gene pools within each of the main taxa. We estimate that both upland-lowland divergence and 4x-to-8x polyploidization within switchgrass began approximately 1.5-1 M ybp and that subsequent ice age cycles have resulted in gene flow between ecotype lineages and between ploidy levels. Gene flow has resulted in ''hot spots'' of genetic diversity in the southeastern USA and along the Atlantic Seaboard.
Switchgrass (Panicum virgatum L.) is a perennial grass native to the North American tallgrass prairie and savanna habitats and is broadly adapted to the central and eastern United States. Upland and lowland ecotypes represent the two major taxa within switchgrass, which have distinct but overlapping distributions. The purpose of this study was to survey a broad array of putative upland and lowland accessions for the possible presence of natural hybrids or hybrid derivatives and evidence of historic gene flow between the two ecotypes. All plants were classified as upland, lowland, or intermediate based on visual assessment of phenotype, using large nurseries of known upland or lowland plants as controls. A total of 480 plants were surveyed for 19 simple sequence repeat (SSR) markers and sequenced using five chloroplast DNA (cpDNA) segments. Genetic structure analysis revealed 21 individuals with strong evidence for intertaxa hybrid origin and another 25 individuals with moderate evidence for intertaxa hybrid origin. All but two of these individuals originated from remnant populations of the central or eastern Gulf Coast or along the Atlantic Seaboard, a region that is populated with significant quantities of both upland and lowland ecotypes. We propose the central and eastern Gulf Coast glacial refuge as the primary center of origin and diversity for switchgrass, with the western Gulf Coast as the secondary center of origin and diversity. Much of this diversity appears to have been preserved along one of the major northward postglacial migration routes, the Atlantic Seaboard.
Phalaris arundinacea L. (reed canarygrass) has become one of the most aggressive invaders of North American wetlands. P. arundinacea is native to temperate N. America, Europe, and Asia, but repeated introductions of European genotypes to N. America, recent range expansions, and the planting of forage and ornamental cultivars complicate the resolution of its demographic history. Molecular tools can help to unravel the demographic and invasion history of populations of invasive species. In this study, inter-simple sequence repeat markers were used to analyze the population genetic structure of European and N. American populations of reed canary grass as well as forage and ornamental cultivars. We found that P. arundinacea harbors a high amount of genetic diversity with most of the diversity located within, as opposed to among, populations. Cluster analyses suggested that current populations are admixtures of two formerly distinct genetic groups.
Plant breeders have played an essential role in improving agricultural crops, and their efforts will be critical to meet the increasing demand for cellulosic bioenergy feedstocks. However, a major concern is the potential development of novel invasive species that result from breeders' efforts to improve agronomic traits in a crop. We use reed canarygrass as a case study to evaluate the potential of plant breeding to give rise to invasive species. Reed canarygrass has been improved by breeders for use as a forage crop, but it is unclear whether breeding efforts have given rise to more vigorous populations of the species. We evaluated cultivars, European wild, and North American invader populations in upland and wetland environments to identify differences in vigor between the groups of populations. While cultivars were among the most vigorous populations in an agricultural environment (upland soils with nitrogen addition), there were no differences in above- or below-ground production between any populations in wetland environments. These results suggest that breeding has only marginally increased vigor in upland environments and that these gains are not maintained in wetland environments. Breeding focuses on selection for improvements of a specific target population of environments, and stability across a wide range of environments has proved elusive for even the most intensively bred crops. We conclude that breeding efforts are not responsible for wetland invasion by reed canarygrass and offer guidelines that will help reduce the possibility of breeding programs releasing cultivars that will become invasive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.