Purpose The purpose of this study was to identify if abnormal tibial alignment was a risk factor for lateral meniscus posterior root tears (LMPRT) in patients with acute anterior cruciate ligament (ACL) ruptures. Methods The medical charts of 200 patients treated for ACL ruptures between 2013 and 2016 were retrospectively reviewed and evaluated. MRI images and reports were assessed for concurrent meniscal tears. Radiographs were reviewed for tibia vara and tibial slope angles and MRI reports identifying lateral root tears were compared to intraoperative reports to determine accuracy. Multiple logistic regression models were constructed to identify potential risk factors for LMPRTs. Results Of the 200 patients reviewed, a total of 97 individuals with concurrent meniscal injuries were identified. In patients sustaining a concurrent meniscal injury, there was a 4% incidence of medial meniscus posterior root tears and a 10.3% incidence of LMPRTs. Patients sustaining an ACL injury with an LMPRT were found to have greater tibia vara angles (4.2 ± 1.0 vs. 2.9 ± 1.7; p = 0.024), increased tibial slopes (12.6 ± 1.5 vs. 10.7 ± 2.9; p = 0.034), and higher BMIs (27.3 ± 2.9 vs. 25.3 ± 5.9; p = 0.034) when compared to patients without meniscus tears. There was low agreement between MRI and arthroscopic findings (kappa rate = 0.54). Multiple logistic regression analysis demonstrated that a tibia vara angle > 3 was associated with a 5.2-fold increase (95% CI 0.99-27.01; p = 0.050), and a tibial slope > 12 with a 5.4-fold increase (95% CI 1.03-28.19; p = 0.046) in LMPRTs. Conclusions Patients with greater tibia varus angles, increased tibial slopes, and higher BMIs were found to have an increased risk of LMPRTs when sustaining an ACL rupture. There was a low rate of agreement between MRI and arthroscopy in identifying LMPRTs. In patients with ACL ruptures who have abnormal tibial alignment or increased BMI, physicians should be watchful for lateral meniscus posterior root tears. Level of evidence 3.
Myocardial ischemia reperfusion injury is a negative pathophysiological event that may result in cardiac cell apoptosis and is a result of coronary revascularization and cardiac intervention procedures. The resulting loss of cardiomyocyte cells and the formation of scar tissue, leads to impaired heart function, a major prognostic determinant of long-term cardiac outcomes. Photobiomodulation is a novel cardiac intervention that has displayed therapeutic effects in reducing myocardial ischemia reperfusion related myocardial injury in animal models. A growing body of evidence supporting the use of photobiomodulation in myocardial infarct models has implicated multiple molecular interactions. A systematic review was conducted to identify the strength of the evidence for the therapeutic effect of photobiomodulation and to summarise the current evidence as to its mechanisms. Photobiomodulation in animal models showed consistently positive effects over a range of wavelengths and application parameters, with reductions in total infarct size (up to 76%), decreases in inflammation and scarring, and increases in tissue repair. Multiple molecular pathways were identified, including modulation of inflammatory cytokines, signalling molecules, transcription factors, enzymes and antioxidants. Current evidence regarding the use of photobiomodulation in acute and planned cardiac intervention is at an early stage but is sufficient to inform on clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.