Basins in orogenic hinterlands are directly coupled to crustal thickening and extension through landscape processes and preserve records of deformation that are unavailable in footwall rocks. Following prolonged late Mesozoic–early Cenozoic crustal thickening and plateau construction, the hinterland of the Sevier orogen of western North America underwent late Cenozoic extension and formation of metamorphic core complexes. While the North American Cordillera is one of Earth’s best-studied orogens, estimates for the spatial and temporal patterns of initial extensional faulting differ greatly and thus limit understanding of potential drivers for deformation. We employed (U-Th)/(He-Pb) double dating of detrital zircon and (U-Th)/He thermochronology of detrital apatite from precisely dated Paleogene terrestrial strata to quantify the timing and magnitude of exhumation and explore the linkages between tectonic unroofing and basin evolution in northeastern Nevada. We determined sediment provenance and lag time evolution (i.e., the time between cooling and deposition, which is a measure of upper-crustal exhumation) during an 8 m.y. time span of deposition within the Eocene Elko Basin. Fluvial strata deposited between 49 and 45 Ma yielded Precambrian (U-Th)/He zircon cooling ages (ZHe) with 105–740 m.y. lag times dominated by unreset detrital ages, suggesting limited exhumation and Proterozoic through early Eocene sediment burial (<4–6 km) across the region. Minimum nonvolcanic detrital ZHe lag times decreased to <100 m.y. in 45–43 Ma strata and to <10 m.y. in 43–41 Ma strata, illustrating progressive and rapid hinterland unroofing in Eocene time. Detrital apatite (U-Th)/He ages present in ca. 44 and 39 Ma strata record Eocene cooling ages with 1–20 m.y. lag times. These data reflect acceleration of basement exhumation rates by >1 km/m.y., indicative of rapid, large-magnitude extensional faulting and metamorphic core complex formation. Contemporaneous with this acceleration of hinterland exhumation, syntectonic freshwater lakes developed in the hanging wall of the Ruby Mountains–East Humboldt Range metamorphic core complex at ca. 43 Ma. Volcanism driven by Farallon slab removal migrated southward across northeastern Nevada, resulting in voluminous rhyolitic eruptions at 41.5 and 40.1 Ma, and marking the abrupt end of fluvial and lacustrine deposition across much of the Elko Basin. Thermal and rheologic weakening of the lithosphere and/or partial slab removal likely initiated extensional deformation, rapidly unroofing deeper crustal levels. We attribute the observed acceleration in exhumation, expansion of sedimentary basins, and migrating volcanism across the middle Eocene to record the thermal and isostatic effects of Farallon slab rollback and subsequent removal of the lowermost mantle lithosphere.
Within extended orogens, records that reflect the driving processes and dynamics of early extension are often overprinted by subsequent orogenic collapse. The Copper Mountains of northeastern Nevada preserve an exceptional record of hinterland extensional deformation and high-elevation basin formation, but current geochronology and thermochronology are insufficient to relate this to broader structural trends in the region. This extension occurred concurrent with volcanism commonly attributed to Farallon slab removal. We combine thermochronology of both synextensional hanging-wall strata and footwall rocks to comprehensively evaluate the precise timing and style of this deformation. Specifically, we apply (U-Th)/(He-Pb) double dating of minerals extracted from Eocene–Oligocene Copper Basin strata with multi-mineral (U-Th)/He and 40Ar/39Ar thermochronology of rocks sampled across an ∼20 km transect of the Copper Mountains. We integrate basement and detrital thermochronology records to comprehensively evaluate the timing and rates of hinterland extension and basin sedimentation. Cooling and U-Pb crystallization ages show the Coffeepot Stock, which spans the width of the Copper Mountains, was emplaced at ca. 109–108 Ma, and then cooled through the 40Ar/39Ar muscovite and biotite closure temperatures by ca. 90 Ma, the zircon (U-Th)/He closure temperature between ca. 90 and 70 Ma, and the apatite (U-Th)/He closure temperature between 43 and 40 Ma. Detrital apatite and zircon (U-Th)/(He-Pb) double dating of late Eocene fluvial and lacustrine strata of the Dead Horse Formation and early Oligocene fluvial strata of the Meadow Fork Formation, both deposited in Copper Basin, shows that Early Cretaceous age detrital grains have a cooling history that is analogous to proximal intrusive rocks of the Coffeepot Stock. At ca. 38 Ma, cooling and depositional ages for Copper Basin strata reveal rapid exhumation of proximal source terranes (cooling rate of ∼37 °C/m.y.); in these terranes, 8–12 km of slip along the low-angle Copper Creek normal fault exhumed the Coffeepot Stock in the footwall. Late Eocene–early Oligocene slip along this fault and an upper fault splay, the Meadow Fork fault, created a half graben that accommodated ∼1.4 km of volcaniclastic strata, including ∼20 m of lacustrine strata that preserve the renowned Copper Basin flora. Single-crystal sanidine 40Ar/39Ar geochronology of interbedded tuffs in Copper Basin constrains the onset of rapid exhumation to 38.0 ± 0.9 Ma, indicating that surface-breaching extensional deformation was coincident with intense proximal volcanism. Coarse-grained syndeformational sediments of the Oligocene Meadow Fork Formation were deposited just prior to formation of an extensive regional Oligocene–Miocene unconformity and represent one of the most complete hinterland stratigraphic records of this time. We interpret this history of rapid late Eocene exhumation across the Copper Mountains, coeval volcanism, and subsequent unconformity formation to reflect dynamic and thermal effects associated with Farallon slab removal. The final phase of extension is recorded by late, high-angle normal faults that cut and rotate the early middle Miocene Jarbidge Rhyolite sequence, deposited unconformably in the hanging wall. These results provide an independent record of episodic Paleogene to Miocene exhumation documented in Cordilleran metamorphic core complexes and establish that substantial extension occurred locally in the hinterland prior to province-wide Miocene extensional break-up.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.