Self-renewal of rodent embryonic stem (ES) cells is enhanced by partial inhibition of glycogen synthase kinase-3 (Gsk3)1
2. This effect has variously been attributed to stimulation of Wnt signalling via β-catenin1, stabilisation of cMyc3, and global de-inhibition of anabolic processes4. Here we demonstrate that β-catenin is not necessary for ES cell identity or expansion, but its absence eliminates the self-renewal response to Gsk3 inhibition. Responsiveness is fully restored by truncated β-catenin lacking the C-terminal transactivation domain5. However, requirement for Gsk3 inhibition is dictated by expression of Tcf3 and mediated by direct interaction with β-catenin. Tcf3 localises to many pluripotency genes6 in ES cells. Our findings confirm that Tcf3 acts as a transcriptional repressor and reveal that β-catenin directly abrogates Tcf3 function. We conclude that Gsk3 inhibition stabilises the ES cell state primarily by reducing repressive influence on the core pluripotency network.
SF3B is a multi-protein complex essential for branch site (BS) recognition and selection during pre-mRNA splicing. Several splicing modulators with antitumor activity bind SF3B and thereby modulate splicing. Here we report the crystal structure of a human SF3B core in complex with pladienolide B (PB), a macrocyclic splicing modulator and potent inhibitor of tumor cell proliferation. PB stalls SF3B in an open conformation by acting like a wedge within a hinge, modulating SF3B's transition to the closed conformation needed to form the BS adenosine-binding pocket and stably accommodate the BS/U2 duplex. This work explains the structural basis for the splicing modulation activity of PB and related compounds, and reveals key interactions between SF3B and a common pharmacophore, providing a framework for future structure-based drug design.
The posttranslational modification of chromatin through
acetylation
at selected histone lysine residues is governed by histone acetyltransferases
(HATs) and histone deacetylases (HDACs). The significance of this
subset of the epigenetic code is interrogated and interpreted by an
acetyllysine-specific protein–protein interaction with bromodomain
reader modules. Selective inhibition of the bromo and extra C-terminal
domain (BET) family of bromodomains with a small molecule is feasible,
and this may represent an opportunity for disease intervention through
the recently disclosed antiproliferative and anti-inflammatory properties
of such inhibitors. Herein, we describe the discovery and structure–activity
relationship (SAR) of a novel, small-molecule chemical probe for BET
family inhibition that was identified through the application of structure-based
fragment assessment and optimization techniques. This has yielded
a potent, selective compound with cell-based activity (PFI-1) that
may further add to the understanding of BET family function within
the bromodomains.
Polycomb
repressive complex 2 (PRC2) has been shown to play a major
role in transcriptional silencing in part by installing methylation
marks on lysine 27 of histone 3. Dysregulation of PRC2 function correlates
with certain malignancies and poor prognosis. EZH2 is the catalytic
engine of the PRC2 complex and thus represents a key candidate oncology
target for pharmacological intervention. Here we report the optimization
of our indole-based EZH2 inhibitor series that led to the identification
of CPI-1205, a highly potent (biochemical IC50 = 0.002
μM, cellular EC50 = 0.032 μM) and selective
inhibitor of EZH2. This compound demonstrates robust antitumor effects
in a Karpas-422 xenograft model when dosed at 160 mg/kg BID and is
currently in Phase I clinical trials. Additionally, we disclose the
co-crystal structure of our inhibitor series bound to the human PRC2
complex.
Somatic mutations in spliceosome proteins lead to dysregulated RNA splicing and are observed in a variety of cancers. These genetic aberrations may offer a potential intervention point for targeted therapeutics. SF3B1, part of the U2 small nuclear RNP (snRNP), is targeted by splicing modulators, including E7107, the first to enter clinical trials, and, more recently, H3B-8800. Modulating splicing represents a first-in-class opportunity in drug discovery, and elucidating the structural basis for the mode of action opens up new possibilities for structure-based drug design. Here, we present the cryogenic electron microscopy (cryo-EM) structure of the SF3b subcomplex (SF3B1, SF3B3, PHF5A, and SF3B5) bound to E7107 at 3.95 Å. This structure shows that E7107 binds in the branch point adenosine-binding pocket, forming close contacts with key residues that confer resistance upon mutation: SF3B1 R1074H and PHF5A Y36C . The structure suggests a model in which splicing modulators interfere with branch point adenosine recognition and supports a substrate competitive mechanism of action (MOA). Using several related chemical probes, we validate the pose of the compound and support their substrate competitive MOA by comparing their activity against both strong and weak pre-mRNA substrates. Finally, we present functional data and structure-activity relationship (SAR) on the PHF5A R38C mutation that sensitizes cells to some chemical probes but not others. Developing small molecule splicing modulators represents a promising therapeutic approach for a variety of diseases, and this work provides a significant step in enabling structure-based drug design for these elaborate natural products. Importantly, this work also demonstrates that the utilization of cryo-EM in drug discovery is coming of age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.