Introduction
The diagnosis of COVID-19 is normally based on the qualitative detection of viral nucleic acid sequences. Properties of the host response are not measured but are key in determining outcome. Although metabolic profiles are well suited to capture host state, most metabolomics studies are either underpowered, measure only a restricted subset of metabolites, compare infected individuals against uninfected control cohorts that are not suitably matched, or do not provide a compact predictive model.
Objectives
Here we provide a well-powered, untargeted metabolomics assessment of 120 COVID-19 patient samples acquired at hospital admission. The study aims to predict the patient’s infection severity (i.e., mild or severe) and potential outcome (i.e., discharged or deceased).
Methods
High resolution untargeted UHPLC-MS/MS analysis was performed on patient serum using both positive and negative ionization modes. A subset of 20 intermediary metabolites predictive of severity or outcome were selected based on univariate statistical significance and a multiple predictor Bayesian logistic regression model was created.
Results
The predictors were selected for their relevant biological function and include deoxycytidine and ureidopropionate (indirectly reflecting viral load), kynurenine (reflecting host inflammatory response), and multiple short chain acylcarnitines (energy metabolism) among others. Currently, this approach predicts outcome and severity with a Monte Carlo cross validated area under the ROC curve of 0.792 (SD 0.09) and 0.793 (SD 0.08), respectively. A blind validation study on an additional 90 patients predicted outcome and severity at ROC AUC of 0.83 (CI 0.74–0.91) and 0.76 (CI 0.67–0.86).
Conclusion
Prognostic tests based on the markers discussed in this paper could allow improvement in the planning of COVID-19 patient treatment.
Background: Alkaptonuria is a rare debilitating autosomal recessive disorder of tyrosine metabolism, where deficiency of homogentisate 1,2-dioxygenase results in increased homogentisic acid. Homogentisic acid is deposited as an ochronotic pigment in connective tissues, especially cartilage, leading to a severe early onset form of osteoarthritis, increased renal and prostatic stone formation and hardening of heart vessels. Treatment with the orphan drug, nitisinone, an inhibitor of 4-hydroxyphenylpyruvate dioxygenase has been shown to reduce urinary excretion of homogentisic acid. Method: A reverse phase liquid chromatography tandem mass spectrometry method has been developed to simultaneously analyse serum homogentisic acid, tyrosine and nitisinone. Using matrix-matched calibration standards, two product ion transitions were identified for each compound (homogentisic acid, tyrosine, nitisinone) and their respective isotopically labelled internal standards ( 13 C 6 -homogentisic acid, d 2 -tyrosine, 13 C 6 -nitisinone). Results: Intrabatch accuracy was 94-108% for homogentisic acid, 95-109% for tyrosine and 89-106% for nitisinone; interbatch accuracy (n ¼ 20) was 88-108% for homogentisic acid, 91-104% for tyrosine and 88-103% for nitisinone. Precision, both intra-and interbatch were <12% for homogentisic acid and tyrosine, and <10% for nitisinone. Matrix effects observed with acidified serum were normalized by the internal standard (<10% coefficient of variation). Homogentisic acid, tyrosine and nitisinone proved stable after 24 h at room temp, three freeze-thaw cycles and 24 h at 4 C. The assay was linear to 500mol/L homogentisic acid, 2000mol/L tyrosine and 10mol/L nitisinone; increased range was not required for clinical samples and no carryover was observed.
Conclusions:The method developed and validated shows good precision, accuracy and linearity appropriate for the monitoring of alkaptonuria patients, pre-and post-nitisinone therapy.
Background Alkaptonuria is a rare, debilitating autosomal recessive disorder affecting tyrosine metabolism. Deficiency of homogentisate 1,2-dioxygenase leads to increased homogentisic acid which is deposited as ochronotic pigment. Clinical sequelae include severe early onset osteoarthritis, increased renal and prostate stone formation and cardiac complications. Treatment has been largely based on analgaesia and arthroplasty. The National Alkaptonuria Centre in Liverpool has been using 2 mg nitisinone (NTBC) off-license for all patients in the United Kingdom with alkaptonuria and monitoring the tyrosine metabolite profiles. Methods Patients with confirmed alkaptonuria are commenced on 2 mg dose (alternative days) of NTBC for three months with daily dose thereafter. Metabolite measurement by LC-MS/MS is performed at baseline, day 4, three-months, six-months and one-year post-commencing NTBC. Thereafter, monitoring and clinical assessments are performed annually. Results Urine homogentisic acid concentration decreased from a mean baseline 20,557 µmol/24 h (95th percentile confidence interval 18,446-22,669 µmol/24 h) by on average 95.4% by six months, 94.8% at one year and 94.1% at two year monitoring. A concurrent reduction in serum homogentisic acid concentration of 83.2% compared to baseline was also measured. Serum tyrosine increased from normal adult reference interval to a mean ± SD of 594 ± 184 µmol /L at year-two monitoring with an increased urinary excretion from 103 ± 81 µmol /24 h at baseline to 1071 ± 726 µmol /24 h two years from therapy. Conclusions The data presented represent the first longitudinal survey of NTBC use in an NHS service setting and demonstrate the sustained effect of NTBC on the tyrosine metabolite profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.