Bentley, M. J., Ocofaigh, C., Anderson, J. B., Conway, H., Davies, B., Graham, A. G. C., Hillenbrand, C. D., Hodgson, D. A., Jamieson, S. S. R., Larter, R. D., Mackintosh, A., Smith, J. A., Verleyen, E., Ackert, R. P., Bart, P. J., Berg, S., Brunstein, D., Canals, M., Colhoun, E. A., Crosta, X., Dickens, W. A., Domack, E., Dowdeswell, J. A., Dunbar, R., Ehrmann, W., Evans, J., Favier, V., Fink, D., Fogwill, C. J., Glasser, N. F., Gohl, K., Golledge, N. R., Goodwin, I., Gore, D. B., Greenwood, S. L., Hall, B. L., Hall, K., Hedding, D. W., Hein, A. S., Hocking, E. P., Jakobsson, M., Johnson, J. S., Jomelli, V., Jones, R. S., Klages, J. P., Kristoffersen, Y., Kuhn, G., Leventer, A., Licht, K., Lilly, K., Lindow, J., Livingstone, S. J., Mass?, G., McGlone, M. S., McKay, R. M., Melles, M., Miura, H., Mulvaney, R., Nel, W., Nitsche, F. O., O'Brien, P. E., Post, A. L., Roberts, S. J., Saunders, K. M., Selkirk, P. M., Simms, A. R., Spiegel, C., Stolldorf, T. D., Sugden, D. E., van der Putten, N., van Ommen, T., Verfaillie, D., Vyverman, W., Wagner, B., White, D. A., Witus, A. E. Zwartz, D. (2014). A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum. Quaternary Science Reviews, 100, 1-9.A robust understanding of Antarctic Ice Sheet deglacial history since the Last Glacial Maximum is important in order to constrain ice sheet and glacial-isostatic adjustment models, and to explore the forcing mechanisms responsible for ice sheet retreat. Such understanding can be derived from a broad range of geological and glaciological datasets and recent decades have seen an upsurge in such data gathering around the continent and Sub-Antarctic islands. Here, we report a new synthesis of those datasets, based on an accompanying series of reviews of the geological data, organised by sector. We present a series of timeslice maps for 20 ka, 15 ka, 10 ka and 5 ka, including grounding line position and ice sheet thickness changes, along with a clear assessment of levels of confidence. The reconstruction shows that the Antarctic Ice sheet did not everywhere reach the continental shelf edge at its maximum, that initial retreat was asynchronous, and that the spatial pattern of deglaciation was highly variable, particularly on the inner shelf. The deglacial reconstruction is consistent with a moderate overall excess ice volume and with a relatively small Antarctic contribution to meltwater pulse la. We discuss key areas of uncertainty both around the continent and by time interval, and we highlight potential priorities for future work. The synthesis is intended to be a resource for the modelling and glacial geological community. (C) 2014 The Authors. Published by Elsevier Ltd.publishersversionPeer reviewe
This paper evaluates the chronology of the last glacial cycle and deglaciation in the Lago Pueyrredón valley of central Patagonia, 47.5º S, Argentina. The valley was a major outlet of the former Patagonian Ice Sheet and the moraines that record its fluctuations are an important proxy record of climate change in southern South America. Such moraines are well-preserved in the Lago Pueyrredón valley owing in part to the semi-arid environment east of the mountain front. Here, we provide the first direct chronology for the age of the "Rio Blanco" moraine system by utilizing cosmogenic-nuclide surface exposure ages. Boulders on the moraines give 10 Be exposure ages that indicate the Last Glacial Maximum (LGM) maximum extent occurred by 27-25 ka. Subsequent advances occurred at ca. 23 ka, ca. 19 ka, and ca. 18-17 ka. Initial deglaciation began after 18-17 ka and was interrupted as evidenced by the Lago Columna moraines upvalley. Subsequently the outlet glaciers occupying both the Lago Pueyrredón basin (Chilean name: Lago Cochrane) and the Lago Buenos Aires basin (Chilean name: Lago General Carrera) to the north, rapidly retreated more than 80 kilometers at around 16.5-15 ka. The timing of the LGM maximum extent and the onset of deglaciation occurred broadly synchronously throughout Patagonia. Deglaciation resulted in a series of interconnected glacierdammed lakes in the region that initially drained toward the Atlantic Ocean and later drained to the Pacific Ocean as a consequence of disintegrating ice in the Andes.
Dust in the atmosphere plays a role in the transparency of the atmosphere 1 , the mineral nourishment of the oceans 2,3 and can be used to constrain global circulation models today and in the past 4 . Antarctic ice cores provide an 800,000 year record of changes in dust flux thought to reflect changes in the vigour of global atmospheric circulation and environmental conditions in source areas 5-8 . Here for the first time we link the source of Last Glacial dust peaks in Antarctica to the gravel outwash plains of Patagonian glaciers in the Magellan area of southernmost South America. We find that there is an on-off switch in that the peaks coincide with episodes when glaciers discharge sediment directly onto outwash plains but not when they terminate in lakes. This finding helps solve several long-standing puzzles, namely: why both dust and fresh water diatom concentrations during glacial maxima are so much higher (x ~20) than at the present day 8,9 ; why dust peaks occur only below a certain temperature threshold 10 ; and why the decline in dust concentrations at the end of glacial cycles precedes the main phase of warming, the rise in sea level, and the reduction in southern hemisphere sea ice extent 10 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.