Evidence is accruing that spiral ligament fibrocytes (SLFs) play an important role in cochlear K(+) homeostasis, but little direct physiological data is available to support this concept. Here we report the presence and characterization of a voltage- and Ca(2+)-dependent big-conductance K (BK) channel in type I SLFs cultured from the gerbil cochlea. A single-channel conductance of 298+/-5.6 pS (n=28) was measured under symmetrical K(+). Membrane potentials for half-maximal open probability (P(o)) were -67, -45 and 85 mV with cytosolic free-Ca(2+) levels of 0.7 mM, 10 microM and 1 microM, respectively (n=8-14). The Hill coefficient for Ca(2+) affinity was 1.9 at a membrane potential of 60 mV (n=6). The BK channel showed very low activity (P(o)=0.0019, n=5) under normal physiological conditions, suggesting a low resting intracellular free [Ca(2+)]. Pharmacological results fit well with the profile of classic BK channels. The estimated half-maximal inhibitory concentration and Hill coefficient for tetraethylammonium were 0.086+/-0.021 mM and 0.99, respectively (n=4-9). In whole cell recordings, the voltage-activated outward K current was inhibited 85.7+/-4.5% (n=6) by 0.1 microM iberiotoxin. A steady-state kinetic model with two open and two closed stages best described the BK gating process (tau(o1) 0.23+/-0.08 ms, tau(o2) 1.40+/-0.32 ms; tau(c1) 0.26+/-0.09 ms, tau(c2) 3.10+/-1.2 ms; n=11). RT-PCR analyses revealed a splice variant of the BK channel alpha subunit in cultured type I SLFs and freshly isolated spiral ligament tissues. The BK channel is likely to play a major role in regulating the membrane potential of type I SLFs, which may in turn influence K(+) recycling dynamics in the mammalian cochlea.
Our present understanding of excitatory neurotransmission has expanded enormously in the last decade through the use of molecular biology. In the mammalian cochlea, the analysis of excitatory amino acid receptor expression by the reverse transcription-polymease chain reaction (RT-PCR), in situ hybridization and immunochemistry has provided considerable evidence for glutamate as the afferent neurtransmitter. Using these molecular techniques, the ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), kainate, N-methyl-D-aspartic acid (NMDA) and delta receptor subunits and the metabotropic glutamate receptors have all been detected in the cochlea, in either the spiral ganglion neurons, the hair cells or both. Due to the utility ofthe techniques and the diversity of expressed neurotransmitter receptors, molecular biology will continue to provide important information for researchers ofthe auditory periphery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.