The Auto-Associative Recurrent Network (AARN), a modified version of the Simple Recurrent Network (SRN) can be trained to behave as recognizer of a language generated by a regular grammar. The network is trained successfully on an unbounded number of sequences of the language, generated randomly from the Finite State Automaton (FSA) of the language. But the training algorithm fails when training is restricted to a fixed finite set of examples. Here, we present a new algorithm for training the AARN from a finite set of language examples. A tree is constructed by preprocessing the training data. The AARN is trained with sequences generated randomly from the tree. The results of the simulations experiments are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.