The characterization of host cell protein (HCP) content during the production of therapeutic recombinant proteins is an important aspect in the drug development process. Despite this, key components of the HCP profile and how this changes with processing has not been fully investigated. Here we have investigated the supernatant HCP profile at different times throughout culture of a null and model GS-CHO monoclonal antibody producing mammalian cell line grown in fed-batch mode. Using 2D-PAGE and LC-MS/MS we identify a number of intracellular proteins (e.g., protein disulfide isomerise; elongation factor 2; calreticulin) that show a significant change in abundance relative to the general increase in HCP concentration observed with progression of culture. Those HCPs that showed a significant change in abundance across the culture above the general increase were dependent on the cell line examined. Further, our data suggests that the majority of HCPs in the supernatant of the cell lines investigated here arise through lysis or breakage of cells, associated with loss in viability, and are not present due to the secretion of protein material from within the cell. SELDI-TOF and principal components analysis were also investigated to enable rapid monitoring of changes in the HCP profile. SELDI-TOF analysis showed the same trends in the HCP profile as observed by 2D-PAGE analysis and highlighted biomarkers that could be used for process monitoring. These data further our understanding of the relationship between the HCP profile and cell viability and may ultimately enable a more directed development of purification strategies and the development of cell lines based upon their HCP profile.
Recombinant protein products such as monoclonal antibodies (mAbs) for use in the clinic must be clear of host cell impurities such as host cell protein (HCP), DNA/RNA, and high molecular weight immunogenic aggregates. Despite the need to remove and monitor HCPs, the nature, and fate of these during downstream processing (DSP) remains poorly characterized. We have applied a proteomic approach to investigate the dynamics and fate of HCPs in the supernatant of a mAb producing cell line during early DSP including centrifugation, depth filtration, and protein A capture chromatography. The primary clarification technique selected was shown to influence the HCP profile that entered subsequent downstream steps. MabSelect protein A chromatography removed the majority of contaminating proteins, however using 2D-PAGE we could visualize not only the antibody species in the eluate (heavy and light chain) but also contaminant HCPs. These data showed that the choice of secondary clarification impacts upon the HCP profile post-protein A chromatography as differences arose in both the presence and abundance of specific HCPs when depth filters were compared. A number of intracellularly located HCPs were identified in protein A elution fractions from a Null cell line culture supernatant including the chaperone Bip/GRP78, heat shock proteins, and the enzyme enolase. We demonstrate that the selection of early DSP steps influences the resulting HCP profile and that 2D-PAGE can be used for monitoring and identification of HCPs post-protein A chromatography. This approach could be used to screen cell lines or hosts to select those with reduced HCP profiles, or to identify HCPs that are problematic and difficult to remove so that cell-engineering approaches can be applied to reduced, or eliminate, such HCPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.