To meet recent advancements in the covalent reporter labeling of proteins, we propose a flexible synthesis for reporter analogs. Here we demonstrate a one-pot chemo-enzymatic synthesis of reporter-labeled proteins that allows the covalent tethering of any amine-terminal fluorescent or affinity label to a carrier protein or fusion construct. This two-reaction sequence consists of activated panthothenate coupling, biosynthetic conversion to the coenzyme A (CoA) analog, and enzymatic carrier protein modification via phosphopantetheinyltransferase (PPTase). We also probe substrate specificity for CoAA, the first enzyme in the pathway. With this approach CoA analogs may be rapidly prepared, thus permitting the regiospecific attachment of reporter moieties from a variety of molecular species.
Fatty acid, polyketide, and nonribosomal peptide biosynthetic enzymes perform structural modifications upon small molecules that remain tethered to a carrier protein. This manuscript details the design and analysis of cross-linking substrates that are selective for acyl carrier proteins and their cognate condensing enzymes. These inactivators are engineered through a covalent linkage to fatty acid acyl carrier protein via post-translational modification to contain a reactive probe that traps the active site cysteine residue of ketosynthase domains. These proteomic tools are applied to Escherichia coli fatty acid synthase enzymes, where KASI and KASII selectively cross-link ACP-bound epoxide and chloroacrylate moieties. These mechanism-based, protein-protein fusion reagents also demonstrated cross-linking of KASI to type II polyketide ACPs, while nonribosomal peptide carrier proteins showed no reactivity. Similar investigations into protein-protein interactions, proximity effects, and substrate specificities will be required to complete the mechanistic understanding of these pathways.
Drug discovery often begins with the screening of large compound libraries to identify lead compounds. Recently, the enzymes involved in the biosynthesis of natural products have been investigated for their potential to generate new, diverse compound libraries. There have been several approaches toward this end, including altering the substrate specificities of the enzymes involved in natural product biosynthesis and engineering functional communication between enzymes from different biosynthetic pathways. While there exist assays to assess substrate specificity of enzymes involved in these pathways, there is no simple method for determining whether enzymes from different synthases will function cooperatively to generate the desired product(s). Herein we report a method which provides insight into both substrate specificity and compatibility of protein-protein interactions between the acyl carrier protein (ACP) and ketosynthase (KS) domains involved in fatty acid and polyketide biosynthesis. Our technique uses a one-pot chemoenzymatic method to generate post-translationally modified ACPs capable of covalently interacting with KS domains from different biosynthetic systems. The extent of interaction between ACPs and KSs from different systems is easily detected and quantified by a gel-based method. Our results are consistent with previous studies of substrate specificity and ACP-KS binding interactions and provide new insight into unnatural substrate and protein interactions.
Protein-protein interactions between domains within fatty acid and polyketide synthases are critical to catalysis, but their contributions remain incompletely characterized. A practical, quantitative system for establishing functional interactions between modifying enzymes and the acyl carrier protein that tethers the nascent polymer would offer a valuable tool for understanding and engineering these enzyme systems. Mechanism-based crosslinking of modular domains offers a potential diagnostic to highlight selective interactions between modular pairs. Here kinetic activity analysis and isothermal titration calorimetry are shown to correlate the efficiency of a ketosynthase-carrier protein crosslinking method to the binding affinity and transacylase activity that occurs in ketosynthase chain elongation.
Chemo-enzymatic methods for covalently crosslinking carrier proteins with partner enzymes within modular synthases hold promise for elucidating and engineering metabolic pathways. Our efforts to crystallize the ACP-KS complexes of fatty acid synthases have been complicated by difficulties in the purification of the crosslinked complex from the other proteins in the reaction. Here we present a solution that employs an orthogonal purification strategy to achieve the quantity and level of purity necessary for further studies of this complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.